upload model and demo

This commit is contained in:
启焚
2025-12-15 10:51:35 +08:00
parent b9f117d7e3
commit 06b3b288df
5 changed files with 938 additions and 17 deletions

214
LICENSE
View File

@ -1,21 +1,201 @@
MIT License
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
Copyright (c) 2025 FunAudioLLM
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
1. Definitions.
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

32
demo1.py Normal file
View File

@ -0,0 +1,32 @@
from funasr import AutoModel
def main():
model_dir = "FunAudioLLM/fun-asr-nano"
model = AutoModel(
model=model_dir,
trust_remote_code=True,
remote_code="./model.py",
device="cuda:0",
)
wav_path = f"{model.model_path}/example/zh.mp3"
res = model.generate(input=[wav_path], cache={}, batch_size=1)
text = res[0]["text"]
print(text)
model = AutoModel(
model=model_dir,
trust_remote_code=True,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 30000},
remote_code="./model.py",
device="cuda:0",
)
res = model.generate(input=[wav_path], cache={}, batch_size=1)
text = res[0]["text"]
print(text)
if __name__ == "__main__":
main()

16
demo2.py Normal file
View File

@ -0,0 +1,16 @@
from model import FunASRNano
def main():
model_dir = "FunAudioLLM/fun-asr-nano"
m, kwargs = FunASRNano.from_pretrained(model=model_dir, device="cuda:0")
m.eval()
wav_path = f"{kwargs['model_path']}/example/zh.mp3"
res = m.inference(data_in=[wav_path], **kwargs)
text = res[0][0]["text"]
print(text)
if __name__ == "__main__":
main()

692
model.py Normal file
View File

@ -0,0 +1,692 @@
import json
import logging
import os
import random
import re
import string
import time
import traceback
import torch
import torch.nn as nn
from funasr import AutoModel
from funasr.metrics.compute_acc import compute_accuracy
from funasr.register import tables
from funasr.train_utils.device_funcs import force_gatherable, to_device
from funasr.utils.datadir_writer import DatadirWriter
from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video
dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}
@tables.register("model_classes", "FunASRNano")
class FunASRNano(nn.Module):
def __init__(
self,
audio_encoder: str = None,
audio_encoder_conf: dict = None,
audio_adaptor: str = None,
audio_adaptor_conf: dict = None,
llm: str = None,
llm_conf: dict = None,
input_size: int = 80,
length_normalized_loss: bool = False,
**kwargs,
):
super().__init__()
# audio encoder
hub = audio_encoder_conf.get("hub", None)
self.audio_encoder_activation_checkpoint = audio_encoder_conf.get(
"activation_checkpoint", False
)
if hub == "ms":
model = AutoModel(model=audio_encoder, model_revision="master")
audio_encoder_output_size = (
model.model.encoder_output_size
if hasattr(model.model, "encoder_output_size")
else -1
)
audio_encoder = (
model.model.model.encoder
if hasattr(model.model, "model")
else model.model.encoder
)
else:
encoder_class = tables.encoder_classes.get(audio_encoder)
audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf)
audio_encoder_output_size = audio_encoder.output_size()
freeze = audio_encoder_conf.get("freeze", True)
freeze_layer_num = int(audio_encoder_conf.get("freeze_layer_num", -1))
if freeze:
for name, param in audio_encoder.named_parameters():
param.requires_grad = False
audio_encoder.eval()
self.audio_encoder = audio_encoder
# llm
self.llm = None
init_param_path = llm_conf.get("init_param_path", None)
llm_dim = None
from transformers import AutoModelForCausalLM
llm_load_kwargs = llm_conf.get("load_kwargs", {})
model = AutoModelForCausalLM.from_pretrained(
init_param_path,
load_in_8bit=None,
device_map=None,
use_cache=None,
**llm_load_kwargs,
)
freeze = llm_conf.get("freeze", True)
if freeze:
for name, param in model.named_parameters():
param.requires_grad = False
model.eval()
logging.info(f"use_lora: {llm_conf.get('use_lora', False)}")
if llm_conf.get("use_lora", False):
from omegaconf import DictConfig, OmegaConf
lora_conf = llm_conf.get("lora_conf", {})
if isinstance(lora_conf, (OmegaConf, DictConfig)):
lora_conf = OmegaConf.to_container(lora_conf, resolve=True)
from peft import LoraConfig, PeftModel, get_peft_model
lora_init_param_path = lora_conf.get("init_param_path", None)
if lora_init_param_path is not None:
logging.info(f"lora_init_param_path: {lora_init_param_path}")
model = PeftModel.from_pretrained(model, lora_init_param_path)
for name, param in model.named_parameters():
if not lora_conf.get("freeze_lora", False):
if "lora_" in name:
param.requires_grad = True
else:
peft_config = LoraConfig(**lora_conf)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
if llm_conf.get("activation_checkpoint", False):
model.gradient_checkpointing_enable()
self.llm_dtype = llm_conf.get("llm_dtype", "fp32")
self.llm = model.to(dtype_map[self.llm_dtype])
llm_dim = model.get_input_embeddings().weight.shape[-1]
# adaptor
adaptor_class = tables.adaptor_classes.get(audio_adaptor)
if audio_encoder_output_size > 0:
audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size
audio_adaptor_conf["llm_dim"] = (
llm_dim if llm_dim is not None else audio_adaptor_conf["llm_dim"]
)
audio_adaptor = adaptor_class(**audio_adaptor_conf)
init_param_path = audio_adaptor_conf.get("init_param_path", None)
if init_param_path is not None:
src_state = torch.load(init_param_path, map_location="cpu")
flag = audio_adaptor.load_state_dict(src_state, strict=False)
logging.info(
f"Loading audio_adaptor ckpt: {init_param_path}, status: {flag}"
)
freeze = audio_adaptor_conf.get("freeze", False)
if freeze:
for name, param in audio_adaptor.named_parameters():
param.requires_grad = False
audio_adaptor.eval()
self.audio_adaptor = audio_adaptor
self.length_normalized_loss = length_normalized_loss
self.feat_permute = audio_encoder_conf.get("feat_permute", True)
rank = int(os.environ.get("RANK", 0))
logging.info(f"rank: {rank}, model is builded.")
def forward(
self,
speech: torch.Tensor = None,
speech_lengths: torch.Tensor = None,
input_ids: torch.Tensor = None,
attention_mask: torch.Tensor = None,
labels_ids: torch.Tensor = None,
fbank_beg: torch.Tensor = None,
fbank_mask: torch.Tensor = None,
**kwargs,
):
batch_size, token_num = input_ids.shape
stats = {}
input_ids[input_ids < 0] = 0
inputs_embeds = self.llm.model.get_input_embeddings()(input_ids)
if speech is not None:
if len(speech_lengths.size()) > 1:
speech_lengths = speech_lengths[:, 0]
batch_size_speech, frames, _ = speech.shape
# audio encoder
if self.audio_encoder_activation_checkpoint:
from torch.utils.checkpoint import checkpoint
encoder_out, encoder_out_lens = checkpoint(
self.encode, speech, speech_lengths, use_reentrant=False
)
else:
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
# audio_adaptor
encoder_out, encoder_out_lens = self.audio_adaptor(
encoder_out, encoder_out_lens
)
batch_size, token_num, dims = inputs_embeds.shape
fake_token_len = kwargs.get("fake_token_len")
fake_token_len[fake_token_len < 0] = 0
fbank_beg[fbank_beg < 0] = 0
speech_idx = 0
for batch_idx in range(batch_size):
for turn_id in range(fbank_beg.shape[1]):
fbank_beg_idx = fbank_beg[batch_idx, turn_id].item()
if fbank_beg_idx > 0:
speech_token_len = fake_token_len[batch_idx, turn_id]
speech_token = encoder_out[speech_idx, :speech_token_len, :]
try:
inputs_embeds[
batch_idx,
fbank_beg_idx : fbank_beg_idx + speech_token_len,
:,
] = speech_token
except Exception as e:
logging.error(f"{str(e)}, {traceback.format_exc()}")
logging.info(
f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}"
)
speech_token_len = encoder_out_lens[speech_idx].item()
speech_token = encoder_out[speech_idx, :speech_token_len, :]
inputs_embeds[
batch_idx,
fbank_beg_idx : fbank_beg_idx + speech_token_len,
:,
] = speech_token
speech_idx += 1
stats["batch_size_speech"] = batch_size_speech
stats["batch_size_x_frames"] = frames * batch_size_speech
stats["batch_size_real_frames"] = speech_lengths.sum().item()
stats["padding_frames"] = (
stats["batch_size_x_frames"] - stats["batch_size_real_frames"]
)
with torch.cuda.amp.autocast(
enabled=True if self.llm_dtype != "fp32" else False,
dtype=dtype_map[self.llm_dtype],
):
labels_ids[labels_ids == -1] = -100
attention_mask[attention_mask < 0] = 0
model_outputs = self.llm(
inputs_embeds=inputs_embeds.to(dtype_map[self.llm_dtype]),
attention_mask=attention_mask,
labels=labels_ids,
)
loss = model_outputs.loss
with torch.no_grad():
preds = torch.argmax(model_outputs.logits, -1)
acc_att = compute_accuracy(
preds[:, :-1], labels_ids[:, 1:], ignore_label=-100
)
stats["acc"] = acc_att
stats["loss"] = torch.clone(loss.detach())
stats["batch_size"] = batch_size
stats["batch_size_x_tokens"] = token_num * batch_size
stats["batch_size_real_tokens"] = attention_mask.sum().item()
stats["padding_tokens"] = (
stats["batch_size_x_tokens"] - stats["batch_size_real_tokens"]
)
dialog_turns = (fbank_beg > 0).sum(-1)
dialog_turns_max = torch.max(dialog_turns).int().item()
dialog_turns_avg = dialog_turns.sum().item() / batch_size
stats["dialog_turns_max"] = dialog_turns_max
stats["dialog_turns_avg"] = dialog_turns_avg
# force_gatherable: to-device and to-tensor if scalar for DataParallel
if self.length_normalized_loss:
batch_size = int((labels_ids > 0 + 1).sum())
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def forward_export(self, speech, speech_lengths, **kwargs):
x, olens = self.audio_encoder(speech, speech_lengths)
encoder_out, encoder_out_lens = self.audio_adaptor(x, olens)
return encoder_out, encoder_out_lens
def encode(self, speech, speech_lengths):
# audio encoder
if self.feat_permute:
encoder_out, encoder_out_lens = self.audio_encoder(
speech.permute(0, 2, 1), speech_lengths
)
else:
encoder_out, encoder_out_lens = self.audio_encoder(speech, speech_lengths)
return encoder_out, encoder_out_lens
def data_template(self, data):
system, user, assistant = [], [], []
for i, item in enumerate(data):
role = item["role"]
content = item["content"]
if role == "system":
system.append(content)
elif role == "user":
if "audio" in item:
audio = item["audio"]
content = [content, audio]
user.append(content)
elif role == "assistant":
assistant.append(content)
system = system * len(user)
contents = {
"system": system,
"user": user,
"assistant": assistant,
}
return contents
def data_load_speech(
self, contents: dict, tokenizer, frontend, meta_data={}, **kwargs
):
system = contents["system"]
user = contents["user"]
assistant = contents["assistant"]
pattern = re.compile(r"(<\|startofspeech\|>.*?<\|endofspeech\|>)")
do_think = True
sys_prompt = True
if "dataset_conf" in kwargs:
do_think = kwargs["dataset_conf"].get("do_think", True)
sys_prompt = kwargs["dataset_conf"].get("sys_prompt", True)
input_ids, labels, fbank, fbank_lens, fbank_mask, fbank_beg, fake_token_len = (
[],
[],
[],
[],
[],
[],
[],
)
input_source_ids = []
for i, (system_prompt, user_prompt, target_out) in enumerate(
zip(system, user, assistant)
):
if i >= kwargs.get("multiturn_num_max", 5):
break
if len(input_ids) > kwargs.get("max_token_length", 1500):
break
if isinstance(user_prompt, (list, tuple)):
user_prompt, audio = user_prompt
if i == 0:
if kwargs.get("infer_with_assistant_input", False):
source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}"
if not sys_prompt:
source_input = f"<|im_start|>user\n{user_prompt}"
else:
source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
if not sys_prompt:
source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
else:
if kwargs.get("infer_with_assistant_input", False):
source_input = f"<|im_start|>user\n{user_prompt}"
else:
source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
if not do_think:
source_input += "<think>\n\n</think>\n\n"
splits = pattern.split(source_input)
source_ids = []
fbank_mask_i = []
fake_token_len_i = 0
fbank_beg_i = -1
speech, speech_lengths = [], []
for k, sub_str in enumerate(splits):
if not sub_str.startswith("<|startofspeech|>"):
sub_token = tokenizer.encode(sub_str)
source_ids += sub_token
fbank_mask_i += [0] * len(sub_token)
else:
sub_str = sub_str.replace("<|startofspeech|>", "").replace(
"<|endofspeech|>", ""
)
if sub_str.startswith("!"):
sub_str = sub_str[1:]
if sub_str.startswith("!"): # !!: audio sample point
sub_str = audio
try:
time1 = time.perf_counter()
data_src = load_audio_text_image_video(
sub_str, fs=frontend.fs, **kwargs
)
time2 = time.perf_counter()
meta_data["load_data"] = f"{time2 - time1:0.3f}"
except Exception as e:
logging.error(
f"Loading wav failed! {str(e)}, {traceback.format_exc()}"
)
speech, speech_lengths = extract_fbank(
data_src,
data_type=kwargs.get("data_type", "sound"),
frontend=frontend,
is_final=True,
) # speech: [b, T, d]
time3 = time.perf_counter()
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
meta_data["batch_data_time"] = (
speech_lengths.sum().item()
* frontend.frame_shift
* frontend.lfr_n
/ 1000
)
if self.feat_permute:
speech = speech.permute(0, 2, 1)
olens = 1 + (speech_lengths[0].item() - 3 + 2 * 1) // 2
olens = 1 + (olens - 3 + 2 * 1) // 2
fake_token_len_i = (olens - 1) // 2 + 1
fake_token = [0] * fake_token_len_i
fbank_beg_i = len(source_ids)
source_ids += fake_token
fbank_mask_i += [1] * len(fake_token)
fbank_beg += [fbank_beg_i + len(input_ids)]
fake_token_len += [fake_token_len_i]
source_mask = [-100] * len(source_ids)
target_out = f"{target_out}<|im_end|>"
target_ids = tokenizer.encode(target_out)
input_source_ids = input_ids + source_ids
input_ids += source_ids + target_ids
labels += source_mask + target_ids
fbank_mask += fbank_mask_i
if len(speech) > 0:
fbank.append(speech[0, :, :])
fbank_lens.append(speech_lengths)
input_ids = torch.tensor(
input_ids, dtype=torch.int64
) # [: self.max_token_length]
attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32)
labels = torch.tensor(labels, dtype=torch.int64) # [: self.max_token_length]
fbank_mask = torch.tensor(fbank_mask, dtype=torch.float32)
fbank_beg = torch.tensor(fbank_beg, dtype=torch.int32)
fake_token_len = torch.tensor(fake_token_len, dtype=torch.int32)
source_ids = torch.tensor(input_source_ids, dtype=torch.int64)
target_ids = torch.tensor(target_ids, dtype=torch.int64)
if len(fbank) > 0:
speech = torch.nn.utils.rnn.pad_sequence(
fbank, batch_first=True, padding_value=0.0
)
speech_lengths = torch.nn.utils.rnn.pad_sequence(
fbank_lens, batch_first=True, padding_value=-1
)
else:
speech = []
speech_lengths = []
output = {
"speech": speech,
"speech_lengths": speech_lengths,
"fbank_mask": fbank_mask[None, :],
"fbank_beg": fbank_beg[None,],
"fake_token_len": fake_token_len[None, :],
"input_ids": input_ids[None,],
"attention_mask": attention_mask[None,],
"labels_ids": labels,
"source_ids": source_ids[None, :],
"target_ids": target_ids[None, :],
}
return output
def inference_prepare(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
meta_data = {}
if kwargs.get("batch_size", 1) > 1:
raise NotImplementedError("batch decoding is not implemented")
contents = self.data_template(data_in[0])
output = self.data_load_speech(
contents, tokenizer, frontend, meta_data=meta_data, **kwargs
)
batch = to_device(output, kwargs["device"])
# audio encoder
speech = batch["speech"]
if len(speech) > 0:
if "audio_embedding" in kwargs and "audio_embedding_lens" in kwargs:
encoder_out = kwargs["audio_embedding"]
encoder_out_lens = kwargs["audio_embedding_lens"]
else:
speech_lengths = batch["speech_lengths"][:, 0]
# fp16
if kwargs.get("fp16", False):
speech = speech.to(torch.float16)
elif kwargs.get("bf16", False):
speech = speech.to(torch.bfloat16)
# audio encoder
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
# audio_adaptor
encoder_out, encoder_out_lens = self.audio_adaptor(
encoder_out, encoder_out_lens
)
meta_data["audio_adaptor_out"] = encoder_out
meta_data["audio_adaptor_out_lens"] = encoder_out_lens
input_ids = batch["input_ids"]
source_ids = batch["source_ids"]
fbank_beg = batch["fbank_beg"]
fake_token_len = batch["fake_token_len"]
if not kwargs.get("tearchforing", False):
input_ids = source_ids
input_ids[input_ids < 0] = 0
inputs_embeds = self.llm.model.get_input_embeddings()(input_ids)
batch_size, token_num, dims = inputs_embeds.shape
fake_token_len[fake_token_len < 0] = 0
fbank_beg[fbank_beg < 0] = 0
speech_idx = 0
for batch_idx in range(batch_size):
for turn_id in range(fbank_beg.shape[1]):
fbank_beg_idx = fbank_beg[batch_idx, turn_id].item()
if fbank_beg_idx > 0:
speech_token_len = fake_token_len[batch_idx, turn_id]
speech_token = encoder_out[speech_idx, :speech_token_len, :]
try:
inputs_embeds[
batch_idx,
fbank_beg_idx : fbank_beg_idx + speech_token_len,
:,
] = speech_token
except Exception as e:
#
logging.error(f"{str(e)}, {traceback.format_exc()}")
logging.info(
f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}"
)
speech_token_len = encoder_out_lens[speech_idx].item()
speech_token = encoder_out[speech_idx, :speech_token_len, :]
inputs_embeds[
batch_idx,
fbank_beg_idx : fbank_beg_idx + speech_token_len,
:,
] = speech_token
speech_idx += 1
return inputs_embeds, contents, batch, source_ids, meta_data
def inference(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
new_data_in = []
for data in data_in:
if isinstance(data, str):
new_data_in.append(
[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": f"语音转写:<|startofspeech|>!{data}<|endofspeech|>",
},
{"role": "assistant", "content": "null"},
]
)
elif isinstance(data, torch.Tensor):
new_data_in.append(
[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": f"语音转写:<|startofspeech|>!!<|endofspeech|>",
"audio": data,
},
{"role": "assistant", "content": "null"},
]
)
data_in = new_data_in
if key is None:
key = []
for _ in data_in:
chars = string.ascii_letters + string.digits
key.append(
"rand_key_" + "".join(random.choice(chars) for _ in range(13))
)
return self.inference_llm(
data_in,
data_lengths=data_lengths,
key=key,
tokenizer=tokenizer,
frontend=frontend,
**kwargs,
)
def inference_llm(
self,
data_in,
data_lengths=None,
key: list = None,
tokenizer=None,
frontend=None,
**kwargs,
):
inputs_embeds, contents, batch, source_ids, meta_data = self.inference_prepare(
data_in, data_lengths, key, tokenizer, frontend, **kwargs
)
llm_dtype = kwargs.get("llm_dtype", "fp32")
if llm_dtype == "fp32":
llm_dtype = "fp16" if kwargs.get("fp16", False) else llm_dtype
llm_dtype = "bf16" if kwargs.get("bf16", False) else llm_dtype
with torch.cuda.amp.autocast(
enabled=True if llm_dtype != "fp32" else False, dtype=dtype_map[llm_dtype]
):
label = contents["assistant"][-1]
self.llm = self.llm.to(dtype_map[llm_dtype])
inputs_embeds = inputs_embeds.to(dtype_map[llm_dtype])
llm_kwargs = kwargs.get("llm_kwargs", {})
if not kwargs.get("teachforing", False):
generated_ids = self.llm.generate(
inputs_embeds=inputs_embeds,
max_new_tokens=kwargs.get("max_length", 512),
**llm_kwargs,
)
response = tokenizer.batch_decode(
generated_ids,
skip_special_tokens=kwargs.get("skip_special_tokens", True),
)[0]
loss = None
else:
labels_ids = batch["labels_ids"]
labels_ids[labels_ids == -1] = -100
attention_mask = batch.get("attention_mask", None)
model_outputs = self.llm(
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
labels=labels_ids,
**llm_kwargs,
)
preds = torch.argmax(model_outputs.logits, -1)[:, source_ids.shape[1] :]
response = tokenizer.batch_decode(
preds,
add_special_tokens=False,
skip_special_tokens=kwargs.get("skip_special_tokens", True),
)[0]
loss = model_outputs.loss.item()
ibest_writer = None
if kwargs.get("output_dir") is not None:
if not hasattr(self, "writer"):
self.writer = DatadirWriter(kwargs.get("output_dir"))
ibest_writer = self.writer[f"{0 + 1}best_recog"]
results = []
response_clean = re.sub(r"[^\w\s\u3000\u4e00-\u9fff]+", "", response)
result_i = {
"key": key[0],
"text": response,
"text_tn": response_clean,
"label": label,
}
if loss is not None:
result_i["loss"] = loss
results.append(result_i)
if ibest_writer is not None:
ibest_writer["text"][key[0]] = response.replace("\n", " ")
ibest_writer["label"][key[0]] = label.replace("\n", " ")
ibest_writer["text_tn"][key[0]] = response_clean
return results, meta_data
@staticmethod
def from_pretrained(model: str = None, **kwargs):
from funasr import AutoModel
model, kwargs = AutoModel.build_model(
model=model, trust_remote_code=True, **kwargs
)
return model, kwargs

1
requirements.txt Normal file
View File

@ -0,0 +1 @@
funasr