upload model and demo
This commit is contained in:
214
LICENSE
214
LICENSE
@ -1,21 +1,201 @@
|
||||
MIT License
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
Copyright (c) 2025 FunAudioLLM
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
1. Definitions.
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
|
||||
32
demo1.py
Normal file
32
demo1.py
Normal file
@ -0,0 +1,32 @@
|
||||
from funasr import AutoModel
|
||||
|
||||
|
||||
def main():
|
||||
model_dir = "FunAudioLLM/fun-asr-nano"
|
||||
model = AutoModel(
|
||||
model=model_dir,
|
||||
trust_remote_code=True,
|
||||
remote_code="./model.py",
|
||||
device="cuda:0",
|
||||
)
|
||||
|
||||
wav_path = f"{model.model_path}/example/zh.mp3"
|
||||
res = model.generate(input=[wav_path], cache={}, batch_size=1)
|
||||
text = res[0]["text"]
|
||||
print(text)
|
||||
|
||||
model = AutoModel(
|
||||
model=model_dir,
|
||||
trust_remote_code=True,
|
||||
vad_model="fsmn-vad",
|
||||
vad_kwargs={"max_single_segment_time": 30000},
|
||||
remote_code="./model.py",
|
||||
device="cuda:0",
|
||||
)
|
||||
res = model.generate(input=[wav_path], cache={}, batch_size=1)
|
||||
text = res[0]["text"]
|
||||
print(text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
16
demo2.py
Normal file
16
demo2.py
Normal file
@ -0,0 +1,16 @@
|
||||
from model import FunASRNano
|
||||
|
||||
|
||||
def main():
|
||||
model_dir = "FunAudioLLM/fun-asr-nano"
|
||||
m, kwargs = FunASRNano.from_pretrained(model=model_dir, device="cuda:0")
|
||||
m.eval()
|
||||
|
||||
wav_path = f"{kwargs['model_path']}/example/zh.mp3"
|
||||
res = m.inference(data_in=[wav_path], **kwargs)
|
||||
text = res[0][0]["text"]
|
||||
print(text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
692
model.py
Normal file
692
model.py
Normal file
@ -0,0 +1,692 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import random
|
||||
import re
|
||||
import string
|
||||
import time
|
||||
import traceback
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from funasr import AutoModel
|
||||
from funasr.metrics.compute_acc import compute_accuracy
|
||||
from funasr.register import tables
|
||||
from funasr.train_utils.device_funcs import force_gatherable, to_device
|
||||
from funasr.utils.datadir_writer import DatadirWriter
|
||||
from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video
|
||||
|
||||
dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}
|
||||
|
||||
|
||||
@tables.register("model_classes", "FunASRNano")
|
||||
class FunASRNano(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
audio_encoder: str = None,
|
||||
audio_encoder_conf: dict = None,
|
||||
audio_adaptor: str = None,
|
||||
audio_adaptor_conf: dict = None,
|
||||
llm: str = None,
|
||||
llm_conf: dict = None,
|
||||
input_size: int = 80,
|
||||
length_normalized_loss: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
# audio encoder
|
||||
hub = audio_encoder_conf.get("hub", None)
|
||||
self.audio_encoder_activation_checkpoint = audio_encoder_conf.get(
|
||||
"activation_checkpoint", False
|
||||
)
|
||||
if hub == "ms":
|
||||
model = AutoModel(model=audio_encoder, model_revision="master")
|
||||
audio_encoder_output_size = (
|
||||
model.model.encoder_output_size
|
||||
if hasattr(model.model, "encoder_output_size")
|
||||
else -1
|
||||
)
|
||||
audio_encoder = (
|
||||
model.model.model.encoder
|
||||
if hasattr(model.model, "model")
|
||||
else model.model.encoder
|
||||
)
|
||||
else:
|
||||
encoder_class = tables.encoder_classes.get(audio_encoder)
|
||||
audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf)
|
||||
audio_encoder_output_size = audio_encoder.output_size()
|
||||
freeze = audio_encoder_conf.get("freeze", True)
|
||||
freeze_layer_num = int(audio_encoder_conf.get("freeze_layer_num", -1))
|
||||
|
||||
if freeze:
|
||||
for name, param in audio_encoder.named_parameters():
|
||||
param.requires_grad = False
|
||||
audio_encoder.eval()
|
||||
self.audio_encoder = audio_encoder
|
||||
# llm
|
||||
self.llm = None
|
||||
init_param_path = llm_conf.get("init_param_path", None)
|
||||
llm_dim = None
|
||||
|
||||
from transformers import AutoModelForCausalLM
|
||||
|
||||
llm_load_kwargs = llm_conf.get("load_kwargs", {})
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
init_param_path,
|
||||
load_in_8bit=None,
|
||||
device_map=None,
|
||||
use_cache=None,
|
||||
**llm_load_kwargs,
|
||||
)
|
||||
|
||||
freeze = llm_conf.get("freeze", True)
|
||||
if freeze:
|
||||
for name, param in model.named_parameters():
|
||||
param.requires_grad = False
|
||||
model.eval()
|
||||
logging.info(f"use_lora: {llm_conf.get('use_lora', False)}")
|
||||
if llm_conf.get("use_lora", False):
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
|
||||
lora_conf = llm_conf.get("lora_conf", {})
|
||||
if isinstance(lora_conf, (OmegaConf, DictConfig)):
|
||||
lora_conf = OmegaConf.to_container(lora_conf, resolve=True)
|
||||
from peft import LoraConfig, PeftModel, get_peft_model
|
||||
|
||||
lora_init_param_path = lora_conf.get("init_param_path", None)
|
||||
if lora_init_param_path is not None:
|
||||
logging.info(f"lora_init_param_path: {lora_init_param_path}")
|
||||
model = PeftModel.from_pretrained(model, lora_init_param_path)
|
||||
for name, param in model.named_parameters():
|
||||
if not lora_conf.get("freeze_lora", False):
|
||||
if "lora_" in name:
|
||||
param.requires_grad = True
|
||||
else:
|
||||
peft_config = LoraConfig(**lora_conf)
|
||||
model = get_peft_model(model, peft_config)
|
||||
model.print_trainable_parameters()
|
||||
|
||||
if llm_conf.get("activation_checkpoint", False):
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
self.llm_dtype = llm_conf.get("llm_dtype", "fp32")
|
||||
self.llm = model.to(dtype_map[self.llm_dtype])
|
||||
llm_dim = model.get_input_embeddings().weight.shape[-1]
|
||||
|
||||
# adaptor
|
||||
adaptor_class = tables.adaptor_classes.get(audio_adaptor)
|
||||
if audio_encoder_output_size > 0:
|
||||
audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size
|
||||
audio_adaptor_conf["llm_dim"] = (
|
||||
llm_dim if llm_dim is not None else audio_adaptor_conf["llm_dim"]
|
||||
)
|
||||
audio_adaptor = adaptor_class(**audio_adaptor_conf)
|
||||
init_param_path = audio_adaptor_conf.get("init_param_path", None)
|
||||
if init_param_path is not None:
|
||||
src_state = torch.load(init_param_path, map_location="cpu")
|
||||
flag = audio_adaptor.load_state_dict(src_state, strict=False)
|
||||
logging.info(
|
||||
f"Loading audio_adaptor ckpt: {init_param_path}, status: {flag}"
|
||||
)
|
||||
freeze = audio_adaptor_conf.get("freeze", False)
|
||||
if freeze:
|
||||
for name, param in audio_adaptor.named_parameters():
|
||||
param.requires_grad = False
|
||||
audio_adaptor.eval()
|
||||
self.audio_adaptor = audio_adaptor
|
||||
|
||||
self.length_normalized_loss = length_normalized_loss
|
||||
self.feat_permute = audio_encoder_conf.get("feat_permute", True)
|
||||
rank = int(os.environ.get("RANK", 0))
|
||||
logging.info(f"rank: {rank}, model is builded.")
|
||||
|
||||
def forward(
|
||||
self,
|
||||
speech: torch.Tensor = None,
|
||||
speech_lengths: torch.Tensor = None,
|
||||
input_ids: torch.Tensor = None,
|
||||
attention_mask: torch.Tensor = None,
|
||||
labels_ids: torch.Tensor = None,
|
||||
fbank_beg: torch.Tensor = None,
|
||||
fbank_mask: torch.Tensor = None,
|
||||
**kwargs,
|
||||
):
|
||||
batch_size, token_num = input_ids.shape
|
||||
stats = {}
|
||||
input_ids[input_ids < 0] = 0
|
||||
inputs_embeds = self.llm.model.get_input_embeddings()(input_ids)
|
||||
if speech is not None:
|
||||
if len(speech_lengths.size()) > 1:
|
||||
speech_lengths = speech_lengths[:, 0]
|
||||
batch_size_speech, frames, _ = speech.shape
|
||||
|
||||
# audio encoder
|
||||
if self.audio_encoder_activation_checkpoint:
|
||||
from torch.utils.checkpoint import checkpoint
|
||||
|
||||
encoder_out, encoder_out_lens = checkpoint(
|
||||
self.encode, speech, speech_lengths, use_reentrant=False
|
||||
)
|
||||
else:
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
|
||||
# audio_adaptor
|
||||
encoder_out, encoder_out_lens = self.audio_adaptor(
|
||||
encoder_out, encoder_out_lens
|
||||
)
|
||||
|
||||
batch_size, token_num, dims = inputs_embeds.shape
|
||||
fake_token_len = kwargs.get("fake_token_len")
|
||||
fake_token_len[fake_token_len < 0] = 0
|
||||
fbank_beg[fbank_beg < 0] = 0
|
||||
|
||||
speech_idx = 0
|
||||
for batch_idx in range(batch_size):
|
||||
for turn_id in range(fbank_beg.shape[1]):
|
||||
fbank_beg_idx = fbank_beg[batch_idx, turn_id].item()
|
||||
if fbank_beg_idx > 0:
|
||||
speech_token_len = fake_token_len[batch_idx, turn_id]
|
||||
speech_token = encoder_out[speech_idx, :speech_token_len, :]
|
||||
|
||||
try:
|
||||
inputs_embeds[
|
||||
batch_idx,
|
||||
fbank_beg_idx : fbank_beg_idx + speech_token_len,
|
||||
:,
|
||||
] = speech_token
|
||||
except Exception as e:
|
||||
logging.error(f"{str(e)}, {traceback.format_exc()}")
|
||||
logging.info(
|
||||
f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}"
|
||||
)
|
||||
speech_token_len = encoder_out_lens[speech_idx].item()
|
||||
speech_token = encoder_out[speech_idx, :speech_token_len, :]
|
||||
inputs_embeds[
|
||||
batch_idx,
|
||||
fbank_beg_idx : fbank_beg_idx + speech_token_len,
|
||||
:,
|
||||
] = speech_token
|
||||
|
||||
speech_idx += 1
|
||||
|
||||
stats["batch_size_speech"] = batch_size_speech
|
||||
stats["batch_size_x_frames"] = frames * batch_size_speech
|
||||
stats["batch_size_real_frames"] = speech_lengths.sum().item()
|
||||
stats["padding_frames"] = (
|
||||
stats["batch_size_x_frames"] - stats["batch_size_real_frames"]
|
||||
)
|
||||
|
||||
with torch.cuda.amp.autocast(
|
||||
enabled=True if self.llm_dtype != "fp32" else False,
|
||||
dtype=dtype_map[self.llm_dtype],
|
||||
):
|
||||
labels_ids[labels_ids == -1] = -100
|
||||
attention_mask[attention_mask < 0] = 0
|
||||
model_outputs = self.llm(
|
||||
inputs_embeds=inputs_embeds.to(dtype_map[self.llm_dtype]),
|
||||
attention_mask=attention_mask,
|
||||
labels=labels_ids,
|
||||
)
|
||||
loss = model_outputs.loss
|
||||
|
||||
with torch.no_grad():
|
||||
preds = torch.argmax(model_outputs.logits, -1)
|
||||
acc_att = compute_accuracy(
|
||||
preds[:, :-1], labels_ids[:, 1:], ignore_label=-100
|
||||
)
|
||||
stats["acc"] = acc_att
|
||||
|
||||
stats["loss"] = torch.clone(loss.detach())
|
||||
stats["batch_size"] = batch_size
|
||||
|
||||
stats["batch_size_x_tokens"] = token_num * batch_size
|
||||
stats["batch_size_real_tokens"] = attention_mask.sum().item()
|
||||
stats["padding_tokens"] = (
|
||||
stats["batch_size_x_tokens"] - stats["batch_size_real_tokens"]
|
||||
)
|
||||
|
||||
dialog_turns = (fbank_beg > 0).sum(-1)
|
||||
dialog_turns_max = torch.max(dialog_turns).int().item()
|
||||
dialog_turns_avg = dialog_turns.sum().item() / batch_size
|
||||
stats["dialog_turns_max"] = dialog_turns_max
|
||||
stats["dialog_turns_avg"] = dialog_turns_avg
|
||||
|
||||
# force_gatherable: to-device and to-tensor if scalar for DataParallel
|
||||
if self.length_normalized_loss:
|
||||
batch_size = int((labels_ids > 0 + 1).sum())
|
||||
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
|
||||
return loss, stats, weight
|
||||
|
||||
def forward_export(self, speech, speech_lengths, **kwargs):
|
||||
x, olens = self.audio_encoder(speech, speech_lengths)
|
||||
encoder_out, encoder_out_lens = self.audio_adaptor(x, olens)
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
def encode(self, speech, speech_lengths):
|
||||
# audio encoder
|
||||
if self.feat_permute:
|
||||
encoder_out, encoder_out_lens = self.audio_encoder(
|
||||
speech.permute(0, 2, 1), speech_lengths
|
||||
)
|
||||
else:
|
||||
encoder_out, encoder_out_lens = self.audio_encoder(speech, speech_lengths)
|
||||
|
||||
return encoder_out, encoder_out_lens
|
||||
|
||||
def data_template(self, data):
|
||||
system, user, assistant = [], [], []
|
||||
for i, item in enumerate(data):
|
||||
role = item["role"]
|
||||
content = item["content"]
|
||||
if role == "system":
|
||||
system.append(content)
|
||||
elif role == "user":
|
||||
if "audio" in item:
|
||||
audio = item["audio"]
|
||||
content = [content, audio]
|
||||
user.append(content)
|
||||
elif role == "assistant":
|
||||
assistant.append(content)
|
||||
|
||||
system = system * len(user)
|
||||
|
||||
contents = {
|
||||
"system": system,
|
||||
"user": user,
|
||||
"assistant": assistant,
|
||||
}
|
||||
|
||||
return contents
|
||||
|
||||
def data_load_speech(
|
||||
self, contents: dict, tokenizer, frontend, meta_data={}, **kwargs
|
||||
):
|
||||
system = contents["system"]
|
||||
user = contents["user"]
|
||||
assistant = contents["assistant"]
|
||||
pattern = re.compile(r"(<\|startofspeech\|>.*?<\|endofspeech\|>)")
|
||||
do_think = True
|
||||
sys_prompt = True
|
||||
if "dataset_conf" in kwargs:
|
||||
do_think = kwargs["dataset_conf"].get("do_think", True)
|
||||
sys_prompt = kwargs["dataset_conf"].get("sys_prompt", True)
|
||||
|
||||
input_ids, labels, fbank, fbank_lens, fbank_mask, fbank_beg, fake_token_len = (
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
)
|
||||
input_source_ids = []
|
||||
for i, (system_prompt, user_prompt, target_out) in enumerate(
|
||||
zip(system, user, assistant)
|
||||
):
|
||||
if i >= kwargs.get("multiturn_num_max", 5):
|
||||
break
|
||||
if len(input_ids) > kwargs.get("max_token_length", 1500):
|
||||
break
|
||||
if isinstance(user_prompt, (list, tuple)):
|
||||
user_prompt, audio = user_prompt
|
||||
if i == 0:
|
||||
if kwargs.get("infer_with_assistant_input", False):
|
||||
source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}"
|
||||
if not sys_prompt:
|
||||
source_input = f"<|im_start|>user\n{user_prompt}"
|
||||
else:
|
||||
source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
|
||||
if not sys_prompt:
|
||||
source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
|
||||
else:
|
||||
if kwargs.get("infer_with_assistant_input", False):
|
||||
source_input = f"<|im_start|>user\n{user_prompt}"
|
||||
else:
|
||||
source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n"
|
||||
if not do_think:
|
||||
source_input += "<think>\n\n</think>\n\n"
|
||||
|
||||
splits = pattern.split(source_input)
|
||||
source_ids = []
|
||||
fbank_mask_i = []
|
||||
fake_token_len_i = 0
|
||||
fbank_beg_i = -1
|
||||
speech, speech_lengths = [], []
|
||||
for k, sub_str in enumerate(splits):
|
||||
if not sub_str.startswith("<|startofspeech|>"):
|
||||
sub_token = tokenizer.encode(sub_str)
|
||||
source_ids += sub_token
|
||||
fbank_mask_i += [0] * len(sub_token)
|
||||
else:
|
||||
sub_str = sub_str.replace("<|startofspeech|>", "").replace(
|
||||
"<|endofspeech|>", ""
|
||||
)
|
||||
if sub_str.startswith("!"):
|
||||
sub_str = sub_str[1:]
|
||||
if sub_str.startswith("!"): # !!: audio sample point
|
||||
sub_str = audio
|
||||
try:
|
||||
time1 = time.perf_counter()
|
||||
data_src = load_audio_text_image_video(
|
||||
sub_str, fs=frontend.fs, **kwargs
|
||||
)
|
||||
time2 = time.perf_counter()
|
||||
meta_data["load_data"] = f"{time2 - time1:0.3f}"
|
||||
except Exception as e:
|
||||
logging.error(
|
||||
f"Loading wav failed! {str(e)}, {traceback.format_exc()}"
|
||||
)
|
||||
|
||||
speech, speech_lengths = extract_fbank(
|
||||
data_src,
|
||||
data_type=kwargs.get("data_type", "sound"),
|
||||
frontend=frontend,
|
||||
is_final=True,
|
||||
) # speech: [b, T, d]
|
||||
|
||||
time3 = time.perf_counter()
|
||||
meta_data["extract_feat"] = f"{time3 - time2:0.3f}"
|
||||
meta_data["batch_data_time"] = (
|
||||
speech_lengths.sum().item()
|
||||
* frontend.frame_shift
|
||||
* frontend.lfr_n
|
||||
/ 1000
|
||||
)
|
||||
|
||||
if self.feat_permute:
|
||||
speech = speech.permute(0, 2, 1)
|
||||
|
||||
olens = 1 + (speech_lengths[0].item() - 3 + 2 * 1) // 2
|
||||
olens = 1 + (olens - 3 + 2 * 1) // 2
|
||||
fake_token_len_i = (olens - 1) // 2 + 1
|
||||
fake_token = [0] * fake_token_len_i
|
||||
fbank_beg_i = len(source_ids)
|
||||
source_ids += fake_token
|
||||
fbank_mask_i += [1] * len(fake_token)
|
||||
|
||||
fbank_beg += [fbank_beg_i + len(input_ids)]
|
||||
fake_token_len += [fake_token_len_i]
|
||||
source_mask = [-100] * len(source_ids)
|
||||
target_out = f"{target_out}<|im_end|>"
|
||||
target_ids = tokenizer.encode(target_out)
|
||||
input_source_ids = input_ids + source_ids
|
||||
input_ids += source_ids + target_ids
|
||||
labels += source_mask + target_ids
|
||||
fbank_mask += fbank_mask_i
|
||||
if len(speech) > 0:
|
||||
fbank.append(speech[0, :, :])
|
||||
fbank_lens.append(speech_lengths)
|
||||
|
||||
input_ids = torch.tensor(
|
||||
input_ids, dtype=torch.int64
|
||||
) # [: self.max_token_length]
|
||||
attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32)
|
||||
labels = torch.tensor(labels, dtype=torch.int64) # [: self.max_token_length]
|
||||
|
||||
fbank_mask = torch.tensor(fbank_mask, dtype=torch.float32)
|
||||
fbank_beg = torch.tensor(fbank_beg, dtype=torch.int32)
|
||||
fake_token_len = torch.tensor(fake_token_len, dtype=torch.int32)
|
||||
source_ids = torch.tensor(input_source_ids, dtype=torch.int64)
|
||||
target_ids = torch.tensor(target_ids, dtype=torch.int64)
|
||||
|
||||
if len(fbank) > 0:
|
||||
speech = torch.nn.utils.rnn.pad_sequence(
|
||||
fbank, batch_first=True, padding_value=0.0
|
||||
)
|
||||
speech_lengths = torch.nn.utils.rnn.pad_sequence(
|
||||
fbank_lens, batch_first=True, padding_value=-1
|
||||
)
|
||||
else:
|
||||
speech = []
|
||||
speech_lengths = []
|
||||
output = {
|
||||
"speech": speech,
|
||||
"speech_lengths": speech_lengths,
|
||||
"fbank_mask": fbank_mask[None, :],
|
||||
"fbank_beg": fbank_beg[None,],
|
||||
"fake_token_len": fake_token_len[None, :],
|
||||
"input_ids": input_ids[None,],
|
||||
"attention_mask": attention_mask[None,],
|
||||
"labels_ids": labels,
|
||||
"source_ids": source_ids[None, :],
|
||||
"target_ids": target_ids[None, :],
|
||||
}
|
||||
|
||||
return output
|
||||
|
||||
def inference_prepare(
|
||||
self,
|
||||
data_in,
|
||||
data_lengths=None,
|
||||
key: list = None,
|
||||
tokenizer=None,
|
||||
frontend=None,
|
||||
**kwargs,
|
||||
):
|
||||
meta_data = {}
|
||||
|
||||
if kwargs.get("batch_size", 1) > 1:
|
||||
raise NotImplementedError("batch decoding is not implemented")
|
||||
|
||||
contents = self.data_template(data_in[0])
|
||||
output = self.data_load_speech(
|
||||
contents, tokenizer, frontend, meta_data=meta_data, **kwargs
|
||||
)
|
||||
batch = to_device(output, kwargs["device"])
|
||||
|
||||
# audio encoder
|
||||
speech = batch["speech"]
|
||||
|
||||
if len(speech) > 0:
|
||||
if "audio_embedding" in kwargs and "audio_embedding_lens" in kwargs:
|
||||
encoder_out = kwargs["audio_embedding"]
|
||||
encoder_out_lens = kwargs["audio_embedding_lens"]
|
||||
else:
|
||||
speech_lengths = batch["speech_lengths"][:, 0]
|
||||
# fp16
|
||||
if kwargs.get("fp16", False):
|
||||
speech = speech.to(torch.float16)
|
||||
elif kwargs.get("bf16", False):
|
||||
speech = speech.to(torch.bfloat16)
|
||||
# audio encoder
|
||||
encoder_out, encoder_out_lens = self.encode(speech, speech_lengths)
|
||||
|
||||
# audio_adaptor
|
||||
encoder_out, encoder_out_lens = self.audio_adaptor(
|
||||
encoder_out, encoder_out_lens
|
||||
)
|
||||
meta_data["audio_adaptor_out"] = encoder_out
|
||||
meta_data["audio_adaptor_out_lens"] = encoder_out_lens
|
||||
|
||||
input_ids = batch["input_ids"]
|
||||
source_ids = batch["source_ids"]
|
||||
fbank_beg = batch["fbank_beg"]
|
||||
fake_token_len = batch["fake_token_len"]
|
||||
|
||||
if not kwargs.get("tearchforing", False):
|
||||
input_ids = source_ids
|
||||
|
||||
input_ids[input_ids < 0] = 0
|
||||
inputs_embeds = self.llm.model.get_input_embeddings()(input_ids)
|
||||
|
||||
batch_size, token_num, dims = inputs_embeds.shape
|
||||
|
||||
fake_token_len[fake_token_len < 0] = 0
|
||||
fbank_beg[fbank_beg < 0] = 0
|
||||
|
||||
speech_idx = 0
|
||||
for batch_idx in range(batch_size):
|
||||
for turn_id in range(fbank_beg.shape[1]):
|
||||
fbank_beg_idx = fbank_beg[batch_idx, turn_id].item()
|
||||
if fbank_beg_idx > 0:
|
||||
speech_token_len = fake_token_len[batch_idx, turn_id]
|
||||
speech_token = encoder_out[speech_idx, :speech_token_len, :]
|
||||
|
||||
try:
|
||||
inputs_embeds[
|
||||
batch_idx,
|
||||
fbank_beg_idx : fbank_beg_idx + speech_token_len,
|
||||
:,
|
||||
] = speech_token
|
||||
except Exception as e:
|
||||
#
|
||||
logging.error(f"{str(e)}, {traceback.format_exc()}")
|
||||
logging.info(
|
||||
f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}"
|
||||
)
|
||||
speech_token_len = encoder_out_lens[speech_idx].item()
|
||||
speech_token = encoder_out[speech_idx, :speech_token_len, :]
|
||||
inputs_embeds[
|
||||
batch_idx,
|
||||
fbank_beg_idx : fbank_beg_idx + speech_token_len,
|
||||
:,
|
||||
] = speech_token
|
||||
|
||||
speech_idx += 1
|
||||
return inputs_embeds, contents, batch, source_ids, meta_data
|
||||
|
||||
def inference(
|
||||
self,
|
||||
data_in,
|
||||
data_lengths=None,
|
||||
key: list = None,
|
||||
tokenizer=None,
|
||||
frontend=None,
|
||||
**kwargs,
|
||||
):
|
||||
new_data_in = []
|
||||
for data in data_in:
|
||||
if isinstance(data, str):
|
||||
new_data_in.append(
|
||||
[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"语音转写:<|startofspeech|>!{data}<|endofspeech|>",
|
||||
},
|
||||
{"role": "assistant", "content": "null"},
|
||||
]
|
||||
)
|
||||
elif isinstance(data, torch.Tensor):
|
||||
new_data_in.append(
|
||||
[
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
{
|
||||
"role": "user",
|
||||
"content": f"语音转写:<|startofspeech|>!!<|endofspeech|>",
|
||||
"audio": data,
|
||||
},
|
||||
{"role": "assistant", "content": "null"},
|
||||
]
|
||||
)
|
||||
data_in = new_data_in
|
||||
|
||||
if key is None:
|
||||
key = []
|
||||
for _ in data_in:
|
||||
chars = string.ascii_letters + string.digits
|
||||
key.append(
|
||||
"rand_key_" + "".join(random.choice(chars) for _ in range(13))
|
||||
)
|
||||
|
||||
return self.inference_llm(
|
||||
data_in,
|
||||
data_lengths=data_lengths,
|
||||
key=key,
|
||||
tokenizer=tokenizer,
|
||||
frontend=frontend,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def inference_llm(
|
||||
self,
|
||||
data_in,
|
||||
data_lengths=None,
|
||||
key: list = None,
|
||||
tokenizer=None,
|
||||
frontend=None,
|
||||
**kwargs,
|
||||
):
|
||||
inputs_embeds, contents, batch, source_ids, meta_data = self.inference_prepare(
|
||||
data_in, data_lengths, key, tokenizer, frontend, **kwargs
|
||||
)
|
||||
llm_dtype = kwargs.get("llm_dtype", "fp32")
|
||||
if llm_dtype == "fp32":
|
||||
llm_dtype = "fp16" if kwargs.get("fp16", False) else llm_dtype
|
||||
llm_dtype = "bf16" if kwargs.get("bf16", False) else llm_dtype
|
||||
|
||||
with torch.cuda.amp.autocast(
|
||||
enabled=True if llm_dtype != "fp32" else False, dtype=dtype_map[llm_dtype]
|
||||
):
|
||||
label = contents["assistant"][-1]
|
||||
self.llm = self.llm.to(dtype_map[llm_dtype])
|
||||
inputs_embeds = inputs_embeds.to(dtype_map[llm_dtype])
|
||||
llm_kwargs = kwargs.get("llm_kwargs", {})
|
||||
if not kwargs.get("teachforing", False):
|
||||
generated_ids = self.llm.generate(
|
||||
inputs_embeds=inputs_embeds,
|
||||
max_new_tokens=kwargs.get("max_length", 512),
|
||||
**llm_kwargs,
|
||||
)
|
||||
|
||||
response = tokenizer.batch_decode(
|
||||
generated_ids,
|
||||
skip_special_tokens=kwargs.get("skip_special_tokens", True),
|
||||
)[0]
|
||||
|
||||
loss = None
|
||||
else:
|
||||
labels_ids = batch["labels_ids"]
|
||||
labels_ids[labels_ids == -1] = -100
|
||||
attention_mask = batch.get("attention_mask", None)
|
||||
model_outputs = self.llm(
|
||||
inputs_embeds=inputs_embeds,
|
||||
attention_mask=attention_mask,
|
||||
labels=labels_ids,
|
||||
**llm_kwargs,
|
||||
)
|
||||
|
||||
preds = torch.argmax(model_outputs.logits, -1)[:, source_ids.shape[1] :]
|
||||
response = tokenizer.batch_decode(
|
||||
preds,
|
||||
add_special_tokens=False,
|
||||
skip_special_tokens=kwargs.get("skip_special_tokens", True),
|
||||
)[0]
|
||||
loss = model_outputs.loss.item()
|
||||
|
||||
ibest_writer = None
|
||||
if kwargs.get("output_dir") is not None:
|
||||
if not hasattr(self, "writer"):
|
||||
self.writer = DatadirWriter(kwargs.get("output_dir"))
|
||||
ibest_writer = self.writer[f"{0 + 1}best_recog"]
|
||||
|
||||
results = []
|
||||
response_clean = re.sub(r"[^\w\s\u3000\u4e00-\u9fff]+", "", response)
|
||||
result_i = {
|
||||
"key": key[0],
|
||||
"text": response,
|
||||
"text_tn": response_clean,
|
||||
"label": label,
|
||||
}
|
||||
if loss is not None:
|
||||
result_i["loss"] = loss
|
||||
results.append(result_i)
|
||||
|
||||
if ibest_writer is not None:
|
||||
ibest_writer["text"][key[0]] = response.replace("\n", " ")
|
||||
ibest_writer["label"][key[0]] = label.replace("\n", " ")
|
||||
ibest_writer["text_tn"][key[0]] = response_clean
|
||||
|
||||
return results, meta_data
|
||||
|
||||
@staticmethod
|
||||
def from_pretrained(model: str = None, **kwargs):
|
||||
from funasr import AutoModel
|
||||
|
||||
model, kwargs = AutoModel.build_model(
|
||||
model=model, trust_remote_code=True, **kwargs
|
||||
)
|
||||
|
||||
return model, kwargs
|
||||
1
requirements.txt
Normal file
1
requirements.txt
Normal file
@ -0,0 +1 @@
|
||||
funasr
|
||||
Reference in New Issue
Block a user