mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
feat: sentiment engine
This commit is contained in:
29
sentiment_engine/sentiment_engine.py
Normal file
29
sentiment_engine/sentiment_engine.py
Normal file
@ -0,0 +1,29 @@
|
||||
import logging
|
||||
|
||||
import onnxruntime
|
||||
from transformers import BertTokenizer
|
||||
import numpy as np
|
||||
|
||||
|
||||
class SentimentEngine():
|
||||
|
||||
def __init__(self, model_path="resources/sentiment_engine/models/paimon_sentiment.onnx"):
|
||||
logging.info('Initializing Sentiment Engine...')
|
||||
onnx_model_path = model_path
|
||||
self.ort_session = onnxruntime.InferenceSession(onnx_model_path, providers=['CPUExecutionProvider'])
|
||||
self.tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
|
||||
|
||||
def infer(self, text):
|
||||
tokens = self.tokenizer(text, return_tensors="np")
|
||||
input_dict = {
|
||||
"input_ids": tokens["input_ids"],
|
||||
"attention_mask": tokens["attention_mask"],
|
||||
}
|
||||
# Convert input_ids and attention_mask to int64
|
||||
input_dict["input_ids"] = input_dict["input_ids"].astype(np.int64)
|
||||
input_dict["attention_mask"] = input_dict["attention_mask"].astype(np.int64)
|
||||
logits = self.ort_session.run(["logits"], input_dict)[0]
|
||||
probabilities = np.exp(logits) / np.sum(np.exp(logits), axis=-1, keepdims=True)
|
||||
predicted = np.argmax(probabilities, axis=1)[0]
|
||||
logging.info(f'Sentiment Engine Infer: {predicted}')
|
||||
return predicted
|
||||
@ -1,3 +1,4 @@
|
||||
from .sentiment import Sentiment
|
||||
from .tts import TTS
|
||||
from ..asr.asr import ASR
|
||||
from .audio_to_text import AudioToText
|
||||
@ -11,6 +12,7 @@ class BlackboxFactory:
|
||||
def __init__(self) -> None:
|
||||
self.tts = TTS()
|
||||
self.asr = ASR("./.env.yaml")
|
||||
self.sentiment = Sentiment()
|
||||
|
||||
def create_blackbox(self, blackbox_name: str, blackbox_config: dict) -> Blackbox:
|
||||
if blackbox_name == "audio_to_text":
|
||||
@ -23,4 +25,6 @@ class BlackboxFactory:
|
||||
return self.asr
|
||||
if blackbox_name == "tts":
|
||||
return self.tts
|
||||
if blackbox_name == "sentiment_engine":
|
||||
return self.sentiment
|
||||
raise ValueError("Invalid blockbox type")
|
||||
31
src/blackbox/sentiment.py
Normal file
31
src/blackbox/sentiment.py
Normal file
@ -0,0 +1,31 @@
|
||||
from typing import Any, Coroutine
|
||||
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
|
||||
from sentiment_engine.sentiment_engine import SentimentEngine
|
||||
from .blackbox import Blackbox
|
||||
|
||||
|
||||
class Sentiment(Blackbox):
|
||||
|
||||
def __init__(self) -> None:
|
||||
self.engine = SentimentEngine('resources/sentiment_engine/models/paimon_sentiment.onnx')
|
||||
|
||||
def valid(self, data: any) -> bool:
|
||||
return isinstance(data, str)
|
||||
|
||||
def processing(self, text: any) -> int:
|
||||
return int(self.engine.infer(text))
|
||||
|
||||
async def fast_api_handler(self, request) -> Response:
|
||||
try:
|
||||
data = await request.json()
|
||||
except:
|
||||
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
text = data.get("text")
|
||||
if text is None:
|
||||
return JSONResponse(content={"error": "text is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
sentiment = self.processing(text)
|
||||
return JSONResponse(content={"sentiment": sentiment }, status_code=status.HTTP_200_OK)
|
||||
|
||||
@ -22,10 +22,6 @@ logging.getLogger().setLevel(logging.INFO)
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
|
||||
|
||||
from pydub import AudioSegment
|
||||
|
||||
|
||||
|
||||
class TTService():
|
||||
|
||||
def __init__(self, cfg, model, char, speed):
|
||||
|
||||
Reference in New Issue
Block a user