mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
Log configuration fixed
This commit is contained in:
@ -34,6 +34,11 @@ python main.py
|
||||
## Configuration
|
||||
Create ".env.yaml" at the root of jarvis-models, and copy the following yaml configuration
|
||||
```yaml
|
||||
log:
|
||||
level: debug
|
||||
time_format: "%Y-%m-%d %H:%M:%S"
|
||||
filename: "D:/Workspace/Logging/jarvis/jarvis-models.log"
|
||||
|
||||
melotts:
|
||||
url: http://{IP running docker melotts-api}:18080/convert/tts
|
||||
|
||||
|
||||
2
main.py
2
main.py
@ -14,7 +14,7 @@ class Main():
|
||||
def run(self):
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.info("jarvis-models start", extra={"version": "0.0.1"})
|
||||
uvicorn.run("server:app", host="0.0.0.0", port=8001, log_level="info")
|
||||
uvicorn.run("server:app", host="0.0.0.0", port=8000, log_level="info")
|
||||
|
||||
if __name__ == "__main__":
|
||||
injector = Injector()
|
||||
|
||||
@ -1,3 +1,4 @@
|
||||
from . import melotts
|
||||
from .audio_chat import AudioChat
|
||||
from .sentiment import Sentiment
|
||||
from .tts import TTS
|
||||
@ -37,6 +38,7 @@ class BlackboxFactory:
|
||||
#chroma_query: ChromaQuery,
|
||||
#chroma_upsert: ChromaUpsert,
|
||||
#chroma_chat: ChromaChat,
|
||||
melotts: MeloTTS,
|
||||
vlms: VLMS) -> None:
|
||||
self.models["audio_to_text"] = audio_to_text
|
||||
self.models["text_to_audio"] = text_to_audio
|
||||
@ -52,6 +54,7 @@ class BlackboxFactory:
|
||||
#self.models["chroma_query"] = chroma_query
|
||||
#self.models["chroma_upsert"] = chroma_upsert
|
||||
#self.models["chroma_chat"] = chroma_chat
|
||||
self.models["melotts"] = melotts
|
||||
self.models["vlms"] = vlms
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
|
||||
@ -42,17 +42,17 @@ class G2E(Blackbox):
|
||||
|
||||
KOMBUKIKI康普茶价格 内地常规版:25 RMB 澳门常规版:28-29 MOP'''
|
||||
|
||||
prompt1 = ''''你是琪琪,活泼的康普茶看板娘,同时你对澳门十分熟悉,是一个澳门旅游专家,请回答任何关于澳门旅游的问题,回答尽量简练明了。
|
||||
'''
|
||||
inject_prompt = '(用活泼的语气说话回答,回答严格限制50字以内)'
|
||||
prompt1 = '''你是琪琪,活泼的康普茶看板娘,同时你对澳门十分熟悉,是一个澳门旅游专家,请回答任何关于澳门旅游的问题,回答尽量简练明了。'''
|
||||
|
||||
#inject_prompt = '(用活泼的语气说话回答,回答严格限制50字以内)'
|
||||
inject_prompt = '(回答简练,不要输出重复内容,只讲中文)'
|
||||
|
||||
prompt_template = [
|
||||
{"role": "system", "content": background_prompt + prompt1},
|
||||
]
|
||||
#prompt_template = [
|
||||
# {"role": "system", "content": ''},
|
||||
# {"role": "system", "content": background_prompt + prompt1},
|
||||
#]
|
||||
prompt_template = [
|
||||
{"role": "system", "content": prompt1},
|
||||
]
|
||||
|
||||
|
||||
messages = prompt_template + context + [
|
||||
@ -61,6 +61,8 @@ class G2E(Blackbox):
|
||||
"content": prompt + inject_prompt
|
||||
}
|
||||
]
|
||||
print("**** History with current prompt input : ****")
|
||||
print(messages)
|
||||
client = OpenAI(
|
||||
api_key='YOUR_API_KEY',
|
||||
base_url=url
|
||||
@ -68,16 +70,19 @@ class G2E(Blackbox):
|
||||
#model_name = client.models.list().data[0].id
|
||||
model_name = client.models.list().data[1].id
|
||||
print(model_name)
|
||||
|
||||
response = client.chat.completions.create(
|
||||
model=model_name,
|
||||
messages=messages,
|
||||
temperature=0.8,
|
||||
top_p=0.8,
|
||||
# max_tokens = 50
|
||||
top_p=0.8
|
||||
#frequency_penalty=0.5,
|
||||
#presence_penalty=0.8,
|
||||
#stop=100
|
||||
)
|
||||
|
||||
fastchat_content = response.choices[0].message.content
|
||||
|
||||
print("*** Model response: " + fastchat_content + " ***")
|
||||
return fastchat_content
|
||||
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
|
||||
Reference in New Issue
Block a user