Log configuration fixed

This commit is contained in:
gdw6463
2024-05-17 17:26:46 +08:00
parent f2d87ec1ea
commit cc44574ffb
4 changed files with 24 additions and 11 deletions

View File

@ -34,6 +34,11 @@ python main.py
## Configuration
Create ".env.yaml" at the root of jarvis-models, and copy the following yaml configuration
```yaml
log:
level: debug
time_format: "%Y-%m-%d %H:%M:%S"
filename: "D:/Workspace/Logging/jarvis/jarvis-models.log"
melotts:
url: http://{IP running docker melotts-api}:18080/convert/tts

View File

@ -14,7 +14,7 @@ class Main():
def run(self):
logger = logging.getLogger(__name__)
logger.info("jarvis-models start", extra={"version": "0.0.1"})
uvicorn.run("server:app", host="0.0.0.0", port=8001, log_level="info")
uvicorn.run("server:app", host="0.0.0.0", port=8000, log_level="info")
if __name__ == "__main__":
injector = Injector()

View File

@ -1,3 +1,4 @@
from . import melotts
from .audio_chat import AudioChat
from .sentiment import Sentiment
from .tts import TTS
@ -37,6 +38,7 @@ class BlackboxFactory:
#chroma_query: ChromaQuery,
#chroma_upsert: ChromaUpsert,
#chroma_chat: ChromaChat,
melotts: MeloTTS,
vlms: VLMS) -> None:
self.models["audio_to_text"] = audio_to_text
self.models["text_to_audio"] = text_to_audio
@ -52,6 +54,7 @@ class BlackboxFactory:
#self.models["chroma_query"] = chroma_query
#self.models["chroma_upsert"] = chroma_upsert
#self.models["chroma_chat"] = chroma_chat
self.models["melotts"] = melotts
self.models["vlms"] = vlms
def __call__(self, *args, **kwargs):

View File

@ -42,17 +42,17 @@ class G2E(Blackbox):
KOMBUKIKI康普茶价格 内地常规版25 RMB 澳门常规版28-29 MOP'''
prompt1 = ''''你是琪琪,活泼的康普茶看板娘,同时你对澳门十分熟悉,是一个澳门旅游专家,请回答任何关于澳门旅游的问题,回答尽量简练明了。
'''
inject_prompt = '(用活泼的语气说话回答回答严格限制50字以内)'
prompt1 = '''你是琪琪,活泼的康普茶看板娘,同时你对澳门十分熟悉,是一个澳门旅游专家,请回答任何关于澳门旅游的问题,回答尽量简练明了。'''
#inject_prompt = '(用活泼的语气说话回答回答严格限制50字以内)'
inject_prompt = '(回答简练,不要输出重复内容,只讲中文)'
prompt_template = [
{"role": "system", "content": background_prompt + prompt1},
]
#prompt_template = [
# {"role": "system", "content": ''},
# {"role": "system", "content": background_prompt + prompt1},
#]
prompt_template = [
{"role": "system", "content": prompt1},
]
messages = prompt_template + context + [
@ -61,6 +61,8 @@ class G2E(Blackbox):
"content": prompt + inject_prompt
}
]
print("**** History with current prompt input ****")
print(messages)
client = OpenAI(
api_key='YOUR_API_KEY',
base_url=url
@ -68,16 +70,19 @@ class G2E(Blackbox):
#model_name = client.models.list().data[0].id
model_name = client.models.list().data[1].id
print(model_name)
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.8,
top_p=0.8,
# max_tokens = 50
top_p=0.8
#frequency_penalty=0.5,
#presence_penalty=0.8,
#stop=100
)
fastchat_content = response.choices[0].message.content
print("*** Model response: " + fastchat_content + " ***")
return fastchat_content
async def fast_api_handler(self, request: Request) -> Response: