mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
@ -89,4 +89,7 @@ Model:
|
||||
batch_size: 3
|
||||
blackbox:
|
||||
lazyloading: true
|
||||
|
||||
vlms:
|
||||
url: http://10.6.80.87:23333
|
||||
```
|
||||
|
||||
@ -1,11 +1,19 @@
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
from injector import singleton,inject
|
||||
from typing import Optional, List
|
||||
|
||||
from .blackbox import Blackbox
|
||||
from typing import Optional
|
||||
from ..log.logging_time import logging_time
|
||||
# from .chroma_query import ChromaQuery
|
||||
from ..configuration import VLMConf
|
||||
|
||||
import requests
|
||||
import base64
|
||||
|
||||
import io
|
||||
from PIL import Image
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
def is_base64(value) -> bool:
|
||||
try:
|
||||
@ -14,9 +22,16 @@ def is_base64(value) -> bool:
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
@singleton
|
||||
class VLMS(Blackbox):
|
||||
|
||||
@inject
|
||||
def __init__(self, vlm_config: VLMConf):
|
||||
# Chroma database initially set up for RAG for vision model.
|
||||
# It could be expended to history store.
|
||||
# self.chroma_query = chroma_query
|
||||
self.url = vlm_config.url
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.processing(*args, **kwargs)
|
||||
|
||||
@ -24,8 +39,18 @@ class VLMS(Blackbox):
|
||||
data = args[0]
|
||||
return isinstance(data, list)
|
||||
|
||||
def processing(self, prompt, images, model_name: Optional[str] = None) -> str:
|
||||
def processing(self, prompt:str, images:str | bytes, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
|
||||
"""
|
||||
Args:
|
||||
prompt: a string query to the model.
|
||||
images: a base64 string of image data;
|
||||
user_context: a list of history conversation, should be a list of openai format.
|
||||
|
||||
|
||||
Return:
|
||||
response: a string
|
||||
history: a list
|
||||
"""
|
||||
if model_name == "Qwen-VL-Chat":
|
||||
model_name = "infer-qwen-vl"
|
||||
elif model_name == "llava-llama-3-8b-v1_1-transformers":
|
||||
@ -33,29 +58,79 @@ class VLMS(Blackbox):
|
||||
else:
|
||||
model_name = "infer-qwen-vl"
|
||||
|
||||
url = 'http://120.196.116.194:48894/' + model_name + '/'
|
||||
|
||||
if is_base64(images):
|
||||
# Transform the images into base64 format where openai format need.
|
||||
if is_base64(images): # image as base64 str
|
||||
images_data = images
|
||||
else:
|
||||
with open(images, "rb") as img_file:
|
||||
images_data = str(base64.b64encode(img_file.read()), 'utf-8')
|
||||
elif isinstance(images,bytes): # image as bytes
|
||||
images_data = str(base64.b64encode(images),'utf-8')
|
||||
else: # image as pathLike str
|
||||
# with open(images, "rb") as img_file:
|
||||
# images_data = str(base64.b64encode(img_file.read()), 'utf-8')
|
||||
res = requests.get(images)
|
||||
images_data = str(base64.b64encode(res.content),'utf-8')
|
||||
## AutoLoad Model
|
||||
# url = 'http://10.6.80.87:8000/' + model_name + '/'
|
||||
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
|
||||
# data = requests.post(url, json=data_input)
|
||||
# print(data.text)
|
||||
# return data.text
|
||||
|
||||
data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
|
||||
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
|
||||
## Lmdeploy
|
||||
if not user_context:
|
||||
user_context = []
|
||||
# user_context = [{'role':'user','content':'你好'}, {'role': 'assistant', 'content': '你好!很高兴为你提供帮助。'}]
|
||||
api_client = APIClient(self.url)
|
||||
model_name = api_client.available_models[0]
|
||||
|
||||
messages = user_context + [{
|
||||
'role': 'user',
|
||||
'content': [{
|
||||
'type': 'text',
|
||||
'text': prompt,
|
||||
}, {
|
||||
'type': 'image_url',
|
||||
'image_url': {
|
||||
'url': f"data:image/jpeg;base64,{images_data}",
|
||||
# './val_data/image_5.jpg',
|
||||
},
|
||||
}]
|
||||
}
|
||||
]
|
||||
|
||||
responses = ''
|
||||
total_token_usage = 0 # which can be used to count the cost of a query
|
||||
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
|
||||
messages=messages#,stream = True
|
||||
)):
|
||||
# print(item["choices"][0]["message"]['content'])
|
||||
responses += item["choices"][0]["message"]['content']
|
||||
total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
|
||||
user_context = messages + [{'role': 'assistant', 'content': responses}]
|
||||
return responses, user_context
|
||||
|
||||
data = requests.post(url, json=data_input)
|
||||
|
||||
return data.text
|
||||
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
json_request = True
|
||||
try:
|
||||
data = await request.json()
|
||||
except:
|
||||
content_type = request.headers['content-type']
|
||||
if content_type == 'application/json':
|
||||
data = await request.json()
|
||||
else:
|
||||
data = await request.form()
|
||||
json_request = False
|
||||
except Exception as e:
|
||||
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
|
||||
model_name = data.get("model_name")
|
||||
prompt = data.get("prompt")
|
||||
img_data = data.get("img_data")
|
||||
|
||||
if json_request:
|
||||
img_data = data.get("img_data")
|
||||
else:
|
||||
img_data = await data.get("img_data").read()
|
||||
|
||||
if prompt is None:
|
||||
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
@ -63,5 +138,7 @@ class VLMS(Blackbox):
|
||||
if model_name is None or model_name.isspace():
|
||||
model_name = "Qwen-VL-Chat"
|
||||
|
||||
jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
|
||||
return JSONResponse(content={"response": jsonresp}, status_code=status.HTTP_200_OK)
|
||||
response, history = self.processing(prompt, img_data, model_name)
|
||||
# jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
|
||||
|
||||
return JSONResponse(content={"response": response, "history": history}, status_code=status.HTTP_200_OK)
|
||||
@ -129,3 +129,10 @@ class BlackboxConf():
|
||||
@inject
|
||||
def __init__(self, config: Configuration) -> None:
|
||||
self.lazyloading = bool(config.get("blackbox.lazyloading", default=False))
|
||||
|
||||
@singleton
|
||||
class VLMConf():
|
||||
|
||||
@inject
|
||||
def __init__(self, config: Configuration) -> None:
|
||||
self.url = config.get("vlms.url")
|
||||
Reference in New Issue
Block a user