Merge pull request #14 from BoardWare-Genius/ivan

VLM implementation
This commit is contained in:
IvanWu
2024-08-20 18:09:41 +08:00
committed by GitHub
3 changed files with 377 additions and 290 deletions

187
README.md
View File

@ -1,92 +1,95 @@
# jarvis-models
## Conda Environment and Python Library Requirement
```bash
conda create -n jarvis-models python==3.10.11
pip install -r sample/requirement_out_of_pytorch.txt
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
```
## More Dependencies
| System | package | web | install command |
| --- |-----------------------| --- | --- |
| python | filetype | https://pypi.org/project/filetype/ | pip install filetype |
| python | fastAPI | https://fastapi.tiangolo.com/ | pip install fastapi |
| python | python-multipart | https://pypi.org/project/python-multipart/ | pip install python-multipart |
| python | uvicorn | https://www.uvicorn.org/ | pip install "uvicorn[standard]" |
| python | SpeechRecognition | https://pypi.org/project/SpeechRecognition/ | pip install SpeechRecognition |
| python | gtts | https://pypi.org/project/gTTS/ | pip install gTTS |
| python | PyYAML | https://pypi.org/project/PyYAML/ | pip install PyYAML |
| python | injector | https://github.com/python-injector/injector | pip install injector |
| python | langchain | https://github.com/langchain-ai/langchain | pip install langchain |
| python | chromadb | https://docs.trychroma.com/getting-started | pip install chromadb |
| python | lagent | https://github.com/InternLM/lagent/blob/main/README.md | pip install lagent |
| python | sentence_transformers | https://github.com/InternLM/lagent/blob/main/README.md | pip install sentence_transformers |
## Start
Start the jarvis-models service via
```bash
uvicorn main:app --reload
```
or
```bash
python main.py
```
## Configuration
Create ".env.yaml" at the root of jarvis-models, and copy the following yaml configuration
```yaml
env:
version: 0.0.1
host: 0.0.0.0
port: 8000
log:
level: debug
time_format: "%Y-%m-%d %H:%M:%S"
filename: "D:/Workspace/Logging/jarvis/jarvis-models.log"
melotts:
mode: local # or docker
url: http://10.6.44.16:18080/convert/tts
speed: 0.9
device: 'cuda'
language: 'ZH'
speaker: 'ZH'
tesou:
url: http://120.196.116.194:48891/chat/
TokenIDConverter:
token_path: src/asr/resources/models/token_list.pkl
unk_symbol: <unk>
CharTokenizer:
symbol_value:
space_symbol: <space>
remove_non_linguistic_symbols: false
WavFrontend:
cmvn_file: src/asr/resources/models/am.mvn
frontend_conf:
fs: 16000
window: hamming
n_mels: 80
frame_length: 25
frame_shift: 10
lfr_m: 7
lfr_n: 6
filter_length_max: -.inf
dither: 0.0
Model:
model_path: src/asr/resources/models/model.onnx
use_cuda: false
CUDAExecutionProvider:
device_id: 0
arena_extend_strategy: kNextPowerOfTwo
cudnn_conv_algo_search: EXHAUSTIVE
do_copy_in_default_stream: true
batch_size: 3
blackbox:
lazyloading: true
```
# jarvis-models
## Conda Environment and Python Library Requirement
```bash
conda create -n jarvis-models python==3.10.11
pip install -r sample/requirement_out_of_pytorch.txt
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
```
## More Dependencies
| System | package | web | install command |
| --- |-----------------------| --- | --- |
| python | filetype | https://pypi.org/project/filetype/ | pip install filetype |
| python | fastAPI | https://fastapi.tiangolo.com/ | pip install fastapi |
| python | python-multipart | https://pypi.org/project/python-multipart/ | pip install python-multipart |
| python | uvicorn | https://www.uvicorn.org/ | pip install "uvicorn[standard]" |
| python | SpeechRecognition | https://pypi.org/project/SpeechRecognition/ | pip install SpeechRecognition |
| python | gtts | https://pypi.org/project/gTTS/ | pip install gTTS |
| python | PyYAML | https://pypi.org/project/PyYAML/ | pip install PyYAML |
| python | injector | https://github.com/python-injector/injector | pip install injector |
| python | langchain | https://github.com/langchain-ai/langchain | pip install langchain |
| python | chromadb | https://docs.trychroma.com/getting-started | pip install chromadb |
| python | lagent | https://github.com/InternLM/lagent/blob/main/README.md | pip install lagent |
| python | sentence_transformers | https://github.com/InternLM/lagent/blob/main/README.md | pip install sentence_transformers |
## Start
Start the jarvis-models service via
```bash
uvicorn main:app --reload
```
or
```bash
python main.py
```
## Configuration
Create ".env.yaml" at the root of jarvis-models, and copy the following yaml configuration
```yaml
env:
version: 0.0.1
host: 0.0.0.0
port: 8000
log:
level: debug
time_format: "%Y-%m-%d %H:%M:%S"
filename: "D:/Workspace/Logging/jarvis/jarvis-models.log"
melotts:
mode: local # or docker
url: http://10.6.44.16:18080/convert/tts
speed: 0.9
device: 'cuda'
language: 'ZH'
speaker: 'ZH'
tesou:
url: http://120.196.116.194:48891/chat/
TokenIDConverter:
token_path: src/asr/resources/models/token_list.pkl
unk_symbol: <unk>
CharTokenizer:
symbol_value:
space_symbol: <space>
remove_non_linguistic_symbols: false
WavFrontend:
cmvn_file: src/asr/resources/models/am.mvn
frontend_conf:
fs: 16000
window: hamming
n_mels: 80
frame_length: 25
frame_shift: 10
lfr_m: 7
lfr_n: 6
filter_length_max: -.inf
dither: 0.0
Model:
model_path: src/asr/resources/models/model.onnx
use_cuda: false
CUDAExecutionProvider:
device_id: 0
arena_extend_strategy: kNextPowerOfTwo
cudnn_conv_algo_search: EXHAUSTIVE
do_copy_in_default_stream: true
batch_size: 3
blackbox:
lazyloading: true
vlms:
url: http://10.6.80.87:23333
```

View File

@ -1,67 +1,144 @@
from fastapi import Request, Response, status
from fastapi.responses import JSONResponse
from .blackbox import Blackbox
from typing import Optional
import requests
import base64
def is_base64(value) -> bool:
try:
base64.b64decode(base64.b64decode(value)) == value.encode()
return True
except Exception:
return False
class VLMS(Blackbox):
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
def valid(self, *args, **kwargs) -> bool:
data = args[0]
return isinstance(data, list)
def processing(self, prompt, images, model_name: Optional[str] = None) -> str:
if model_name == "Qwen-VL-Chat":
model_name = "infer-qwen-vl"
elif model_name == "llava-llama-3-8b-v1_1-transformers":
model_name = "infer-lav-lam-v1-1"
else:
model_name = "infer-qwen-vl"
url = 'http://120.196.116.194:48894/' + model_name + '/'
if is_base64(images):
images_data = images
else:
with open(images, "rb") as img_file:
images_data = str(base64.b64encode(img_file.read()), 'utf-8')
data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
data = requests.post(url, json=data_input)
return data.text
async def fast_api_handler(self, request: Request) -> Response:
try:
data = await request.json()
except:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
model_name = data.get("model_name")
prompt = data.get("prompt")
img_data = data.get("img_data")
if prompt is None:
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
if model_name is None or model_name.isspace():
model_name = "Qwen-VL-Chat"
jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
return JSONResponse(content={"response": jsonresp}, status_code=status.HTTP_200_OK)
from fastapi import Request, Response, status
from fastapi.responses import JSONResponse
from injector import singleton,inject
from typing import Optional, List
from .blackbox import Blackbox
from ..log.logging_time import logging_time
# from .chroma_query import ChromaQuery
from ..configuration import VLMConf
import requests
import base64
import io
from PIL import Image
from lmdeploy.serve.openai.api_client import APIClient
def is_base64(value) -> bool:
try:
base64.b64decode(base64.b64decode(value)) == value.encode()
return True
except Exception:
return False
@singleton
class VLMS(Blackbox):
@inject
def __init__(self, vlm_config: VLMConf):
# Chroma database initially set up for RAG for vision model.
# It could be expended to history store.
# self.chroma_query = chroma_query
self.url = vlm_config.url
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
def valid(self, *args, **kwargs) -> bool:
data = args[0]
return isinstance(data, list)
def processing(self, prompt:str, images:str | bytes, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
"""
Args:
prompt: a string query to the model.
images: a base64 string of image data;
user_context: a list of history conversation, should be a list of openai format.
Return:
response: a string
history: a list
"""
if model_name == "Qwen-VL-Chat":
model_name = "infer-qwen-vl"
elif model_name == "llava-llama-3-8b-v1_1-transformers":
model_name = "infer-lav-lam-v1-1"
else:
model_name = "infer-qwen-vl"
# Transform the images into base64 format where openai format need.
if is_base64(images): # image as base64 str
images_data = images
elif isinstance(images,bytes): # image as bytes
images_data = str(base64.b64encode(images),'utf-8')
else: # image as pathLike str
# with open(images, "rb") as img_file:
# images_data = str(base64.b64encode(img_file.read()), 'utf-8')
res = requests.get(images)
images_data = str(base64.b64encode(res.content),'utf-8')
## AutoLoad Model
# url = 'http://10.6.80.87:8000/' + model_name + '/'
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
# data = requests.post(url, json=data_input)
# print(data.text)
# return data.text
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
## Lmdeploy
if not user_context:
user_context = []
# user_context = [{'role':'user','content':'你好'}, {'role': 'assistant', 'content': '你好!很高兴为你提供帮助。'}]
api_client = APIClient(self.url)
model_name = api_client.available_models[0]
messages = user_context + [{
'role': 'user',
'content': [{
'type': 'text',
'text': prompt,
}, {
'type': 'image_url',
'image_url': {
'url': f"data:image/jpeg;base64,{images_data}",
# './val_data/image_5.jpg',
},
}]
}
]
responses = ''
total_token_usage = 0 # which can be used to count the cost of a query
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
messages=messages#,stream = True
)):
# print(item["choices"][0]["message"]['content'])
responses += item["choices"][0]["message"]['content']
total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
user_context = messages + [{'role': 'assistant', 'content': responses}]
return responses, user_context
async def fast_api_handler(self, request: Request) -> Response:
json_request = True
try:
content_type = request.headers['content-type']
if content_type == 'application/json':
data = await request.json()
else:
data = await request.form()
json_request = False
except Exception as e:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
model_name = data.get("model_name")
prompt = data.get("prompt")
if json_request:
img_data = data.get("img_data")
else:
img_data = await data.get("img_data").read()
if prompt is None:
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
if model_name is None or model_name.isspace():
model_name = "Qwen-VL-Chat"
response, history = self.processing(prompt, img_data, model_name)
# jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
return JSONResponse(content={"response": response, "history": history}, status_code=status.HTTP_200_OK)

View File

@ -1,131 +1,138 @@
from dataclasses import dataclass
from injector import inject,singleton
import yaml
import sys
import logging
@singleton
class Configuration():
@inject
def __init__(self) -> None:
config_file_path = ""
try:
config_file_path = sys.argv[1]
except:
config_file_path = ".env.yaml"
with open(config_file_path) as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
self.cfg = cfg
def getDict(self):
return self.cfg
"""
# yaml 檔中的路徑 get("aaa.bbb.ccc")
aaa:
bbb:
ccc: "hello world"
"""
def get(self, path: str | list[str], cfg: dict = None, default=None):
if isinstance(path, str):
if cfg is None:
cfg = self.cfg
return self.get(path.split("."), cfg)
length = len(path)
if length == 0 or not isinstance(cfg, dict):
return default
if length == 1:
return cfg.get(path[0])
return self.get(path[1:], cfg.get(path[0]))
class TesouConf():
url: str
@inject
def __init__(self, config: Configuration) -> None:
self.url = config.get("tesou.url")
class MeloConf():
mode: str
url: str
speed: int
device: str
language: str
speaker: str
@inject
def __init__(self, config: Configuration) -> None:
self.mode = config.get("melotts.mode")
self.url = config.get("melotts.url")
self.speed = config.get("melotts.speed")
self.device = config.get("melotts.device")
self.language = config.get("melotts.language")
self.speaker = config.get("melotts.speaker")
class CosyVoiceConf():
mode: str
url: str
speed: int
device: str
language: str
speaker: str
@inject
def __init__(self, config: Configuration) -> None:
self.mode = config.get("cosyvoicetts.mode")
self.url = config.get("cosyvoicetts.url")
self.speed = config.get("cosyvoicetts.speed")
self.device = config.get("cosyvoicetts.device")
self.language = config.get("cosyvoicetts.language")
self.speaker = config.get("cosyvoicetts.speaker")
# 'CRITICAL': CRITICAL,
# 'FATAL': FATAL,
# 'ERROR': ERROR,
# 'WARN': WARNING,
# 'WARNING': WARNING,
# 'INFO': INFO,
# 'DEBUG': DEBUG,
# 'NOTSET': NOTSET,
DEFAULT_LEVEL="WARNING"
DEFAULT_TIME_FORMAT="%Y-%m-%d %H:%M:%S"
@singleton
class LogConf():
level: int
time_format = "%Y-%m-%d %H:%M:%S"
filename: str | None
@inject
def __init__(self, config: Configuration) -> None:
self.level = config.get("log.level")
c = config.get("log.level", default=DEFAULT_LEVEL).upper()
level=logging._nameToLevel.get(c)
if level is None:
self.level = logging.WARNING
else:
self.level = level
self.filename = config.get("log.filename")
self.time_format = config.get("log.time_format", default=DEFAULT_TIME_FORMAT)
@singleton
class EnvConf():
version: str
host: str
port: str
@inject
def __init__(self, config: Configuration) -> None:
self.version = "0.0.1"
self.host = config.get("env.host", default="0.0.0.0")
self.port = config.get("env.port", default="8080")
@singleton
@dataclass
class BlackboxConf():
lazyloading: bool
@inject
def __init__(self, config: Configuration) -> None:
self.lazyloading = bool(config.get("blackbox.lazyloading", default=False))
from dataclasses import dataclass
from injector import inject,singleton
import yaml
import sys
import logging
@singleton
class Configuration():
@inject
def __init__(self) -> None:
config_file_path = ""
try:
config_file_path = sys.argv[1]
except:
config_file_path = ".env.yaml"
with open(config_file_path) as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
self.cfg = cfg
def getDict(self):
return self.cfg
"""
# yaml 檔中的路徑 get("aaa.bbb.ccc")
aaa:
bbb:
ccc: "hello world"
"""
def get(self, path: str | list[str], cfg: dict = None, default=None):
if isinstance(path, str):
if cfg is None:
cfg = self.cfg
return self.get(path.split("."), cfg)
length = len(path)
if length == 0 or not isinstance(cfg, dict):
return default
if length == 1:
return cfg.get(path[0])
return self.get(path[1:], cfg.get(path[0]))
class TesouConf():
url: str
@inject
def __init__(self, config: Configuration) -> None:
self.url = config.get("tesou.url")
class MeloConf():
mode: str
url: str
speed: int
device: str
language: str
speaker: str
@inject
def __init__(self, config: Configuration) -> None:
self.mode = config.get("melotts.mode")
self.url = config.get("melotts.url")
self.speed = config.get("melotts.speed")
self.device = config.get("melotts.device")
self.language = config.get("melotts.language")
self.speaker = config.get("melotts.speaker")
class CosyVoiceConf():
mode: str
url: str
speed: int
device: str
language: str
speaker: str
@inject
def __init__(self, config: Configuration) -> None:
self.mode = config.get("cosyvoicetts.mode")
self.url = config.get("cosyvoicetts.url")
self.speed = config.get("cosyvoicetts.speed")
self.device = config.get("cosyvoicetts.device")
self.language = config.get("cosyvoicetts.language")
self.speaker = config.get("cosyvoicetts.speaker")
# 'CRITICAL': CRITICAL,
# 'FATAL': FATAL,
# 'ERROR': ERROR,
# 'WARN': WARNING,
# 'WARNING': WARNING,
# 'INFO': INFO,
# 'DEBUG': DEBUG,
# 'NOTSET': NOTSET,
DEFAULT_LEVEL="WARNING"
DEFAULT_TIME_FORMAT="%Y-%m-%d %H:%M:%S"
@singleton
class LogConf():
level: int
time_format = "%Y-%m-%d %H:%M:%S"
filename: str | None
@inject
def __init__(self, config: Configuration) -> None:
self.level = config.get("log.level")
c = config.get("log.level", default=DEFAULT_LEVEL).upper()
level=logging._nameToLevel.get(c)
if level is None:
self.level = logging.WARNING
else:
self.level = level
self.filename = config.get("log.filename")
self.time_format = config.get("log.time_format", default=DEFAULT_TIME_FORMAT)
@singleton
class EnvConf():
version: str
host: str
port: str
@inject
def __init__(self, config: Configuration) -> None:
self.version = "0.0.1"
self.host = config.get("env.host", default="0.0.0.0")
self.port = config.get("env.port", default="8080")
@singleton
@dataclass
class BlackboxConf():
lazyloading: bool
@inject
def __init__(self, config: Configuration) -> None:
self.lazyloading = bool(config.get("blackbox.lazyloading", default=False))
@singleton
class VLMConf():
@inject
def __init__(self, config: Configuration) -> None:
self.url = config.get("vlms.url")