Merge pull request #30 from BoardWare-Genius/ivan

feat: vlm support vllm, system prompt, model selection
This commit is contained in:
Benson Ou
2025-03-21 16:02:22 +08:00
committed by GitHub
2 changed files with 73 additions and 37 deletions

View File

@ -91,5 +91,8 @@ blackbox:
lazyloading: true lazyloading: true
vlms: vlms:
url: http://10.6.80.87:23333 urls:
qwen_vl: http://10.6.80.87:8000
qwen2_vl: http://10.6.80.87:23333
qwen2_vl_72b: http://10.6.80.91:23333
``` ```

View File

@ -24,6 +24,8 @@ import io
from PIL import Image from PIL import Image
from lmdeploy.serve.openai.api_client import APIClient from lmdeploy.serve.openai.api_client import APIClient
from openai import OpenAI
def is_base64(value) -> bool: def is_base64(value) -> bool:
try: try:
@ -56,14 +58,15 @@ class VLMS(Blackbox):
- skip_special_tokens (bool): Whether or not to remove special tokens - skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be True.""" in the decoding. Default to be True."""
self.model_dict = vlm_config.urls self.model_dict = vlm_config.urls
self.model_url = None # self.model_url = None
self.available_models = {}
self.temperature: float = 0.7 self.temperature: float = 0.7
self.top_p:float = 1 self.top_p:float = 1
self.max_tokens: (int |None) = 512 self.max_tokens: (int |None) = 512
self.repetition_penalty: float = 1 self.repetition_penalty: float = 1
self.stop: (str | List[str] |None) = ['<|endoftext|>','<|im_end|>'] self.stop: (str | List[str] |None) = ['<|endoftext|>','<|im_end|>']
self.top_k: (int) = None self.top_k: (int) = 40
self.ignore_eos: (bool) = False self.ignore_eos: (bool) = False
self.skip_special_tokens: (bool) = True self.skip_special_tokens: (bool) = True
@ -76,11 +79,16 @@ class VLMS(Blackbox):
"top_k": self.top_k, "top_k": self.top_k,
"ignore_eos": self.ignore_eos, "ignore_eos": self.ignore_eos,
"skip_special_tokens": self.skip_special_tokens, "skip_special_tokens": self.skip_special_tokens,
# "system_prompt":"",
# "vlm_model_name":" ",
} }
for model, url in self.model_dict.items():
try:
response = requests.get(url+'/health',timeout=3)
if response.status_code == 200:
self.available_models[model] = url
except Exception as e:
# print(e)
pass
def __call__(self, *args, **kwargs): def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs) return self.processing(*args, **kwargs)
@ -100,21 +108,30 @@ class VLMS(Blackbox):
response: a string response: a string
history: a list history: a list
""" """
config: dict = {
"lmdeploy_infer":True,
"system_prompt":"",
"vlm_model_name":"",
}
if settings: if settings:
for k in list(settings.keys()): for k in list(settings.keys()):
if k not in self.settings: if k not in self.settings:
print("Warning: '{}' is not a support argument and ignore this argment, check the arguments {}".format(k,self.settings.keys())) print("Warning: '{}' is not a support argument and ignore this argment, check the arguments {}".format(k,self.settings.keys()))
settings.pop(k) config[k] = settings.pop(k)
tmp = copy.deepcopy(self.settings) tmp = copy.deepcopy(self.settings)
tmp.update(settings) tmp.update(settings)
settings = tmp settings = tmp
else: else:
settings = {} settings = {}
config['lmdeploy_infer'] = str(config['lmdeploy_infer']).strip().lower() == 'true'
if not prompt: if not prompt:
prompt = '你是一个辅助机器人请就此图做一个简短的概括性描述包括图中的主体物品及状态不超过50字。' if images else '你好' prompt = '你是一个辅助机器人请就此图做一个简短的概括性描述包括图中的主体物品及状态不超过50字。' if images else '你好'
# Transform the images into base64 format where openai format need. # Transform the images into base64 format where openai url)
# print(self.config['vlm_model_name'])
# print(self.available_models)format need.
if images: if images:
if is_base64(images): # image as base64 str if is_base64(images): # image as base64 str
images_data = images images_data = images
@ -131,7 +148,6 @@ class VLMS(Blackbox):
# url = 'http://10.6.80.87:8000/' + model_name + '/' # url = 'http://10.6.80.87:8000/' + model_name + '/'
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data} # data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
# data = requests.post(url, json=data_input) # data = requests.post(url, json=data_input)
# print(data.text)
# return data.text # return data.text
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg' # 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
@ -157,13 +173,10 @@ class VLMS(Blackbox):
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。' # 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
# } # }
# ] # ]
if not user_context and config['system_prompt']: user_context = [{'role':'system','content': config['system_prompt']}]
user_context = self.keep_last_k_images(user_context,k = 1) user_context = self.keep_last_k_images(user_context,k = 1)
if self.model_url is None: self.model_url = self._get_model_url(model_name) # if self.model_url is None: self.model_url = self._get_model_url(model_name)
api_client = APIClient(self.model_url)
# api_client = APIClient("http://10.6.80.91:23333")
model_name = api_client.available_models[0]
# Reformat input into openai format to request. # Reformat input into openai format to request.
if images_data: if images_data:
messages = user_context + [{ messages = user_context + [{
@ -199,40 +212,60 @@ class VLMS(Blackbox):
responses = '' responses = ''
total_token_usage = 0 # which can be used to count the cost of a query total_token_usage = 0 # which can be used to count the cost of a query
model_url = self._get_model_url(config['vlm_model_name'])
# print(model_url)
# print(self.config['vlm_model_name'])
# print(self.available_models)
if config['lmdeploy_infer']:
api_client = APIClient(model_url)
model_name = api_client.available_models[0]
for i,item in enumerate(api_client.chat_completions_v1(model=model_name, for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
messages=messages,stream = True, messages=messages,stream = True,
**settings, **settings,
# session_id=, # session_id=,
)): )):
# Stream output # Stream output
print(item["choices"][0]["delta"]['content'],end='\n') # print(item["choices"][0]["delta"]['content'],end='\n')
yield item["choices"][0]["delta"]['content'] yield item["choices"][0]["delta"]['content']
responses += item["choices"][0]["delta"]['content'] responses += item["choices"][0]["delta"]['content']
# print(item["choices"][0]["message"]['content']) # print(item["choices"][0]["message"]['content'])
# responses += item["choices"][0]["message"]['content'] # responses += item["choices"][0]["message"]['content']
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *} # total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
else:
api_key = "EMPTY_API_KEY"
# print(model_url+'/v1')
api_client = OpenAI(api_key=api_key, base_url=model_url+'/v1')
model_name = api_client.models.list().data[0].id
for item in api_client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.8,
top_p=0.8,
stream=True):
yield(item.choices[0].delta.content)
responses += item.choices[0].delta.content
# response = api_client.chat.completions.create(
# model=model_name,
# messages=messages,
# temperature=0.8,
# top_p=0.8)
# print(response.choices[0].message.content)
# return response.choices[0].message.content
user_context = messages + [{'role': 'assistant', 'content': responses}] user_context = messages + [{'role': 'assistant', 'content': responses}]
self.custom_print(user_context) self.custom_print(user_context)
# return responses, user_context # return responses, user_context
def _get_model_url(self,model_name:str | None): def _get_model_url(self,model_name:str | None):
available_models = {} if not self.available_models: print("There are no available running models and please check your endpoint urls.")
for model, url in self.model_dict.items(): if model_name and model_name in self.available_models:
try: return self.available_models[model_name]
response = requests.get(url,timeout=3)
if response.status_code == 200:
available_models[model] = url
except Exception as e:
# print(e)
pass
if not available_models: print("There are no available running models and please check your endpoint urls.")
if model_name and model_name in available_models:
return available_models[model_name]
else: else:
model = random.choice(list(available_models.keys())) model = random.choice(list(self.available_models.keys()))
print(f"No such model {model_name}, using {model} instead.") if model_name else print(f"Using random model {model}.") print(f"No such model {model_name}, using {model} instead.") if model_name else print(f"Using random model {model}.")
return available_models[model] return self.available_models[model]
def _into_openai_format(self, context:List[list]) -> List[dict]: def _into_openai_format(self, context:List[list]) -> List[dict]:
""" """