mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
Merge pull request #30 from BoardWare-Genius/ivan
feat: vlm support vllm, system prompt, model selection
This commit is contained in:
@ -91,5 +91,8 @@ blackbox:
|
|||||||
lazyloading: true
|
lazyloading: true
|
||||||
|
|
||||||
vlms:
|
vlms:
|
||||||
url: http://10.6.80.87:23333
|
urls:
|
||||||
|
qwen_vl: http://10.6.80.87:8000
|
||||||
|
qwen2_vl: http://10.6.80.87:23333
|
||||||
|
qwen2_vl_72b: http://10.6.80.91:23333
|
||||||
```
|
```
|
||||||
|
|||||||
@ -24,6 +24,8 @@ import io
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from lmdeploy.serve.openai.api_client import APIClient
|
from lmdeploy.serve.openai.api_client import APIClient
|
||||||
|
|
||||||
|
from openai import OpenAI
|
||||||
|
|
||||||
|
|
||||||
def is_base64(value) -> bool:
|
def is_base64(value) -> bool:
|
||||||
try:
|
try:
|
||||||
@ -56,14 +58,15 @@ class VLMS(Blackbox):
|
|||||||
- skip_special_tokens (bool): Whether or not to remove special tokens
|
- skip_special_tokens (bool): Whether or not to remove special tokens
|
||||||
in the decoding. Default to be True."""
|
in the decoding. Default to be True."""
|
||||||
self.model_dict = vlm_config.urls
|
self.model_dict = vlm_config.urls
|
||||||
self.model_url = None
|
# self.model_url = None
|
||||||
|
self.available_models = {}
|
||||||
self.temperature: float = 0.7
|
self.temperature: float = 0.7
|
||||||
self.top_p:float = 1
|
self.top_p:float = 1
|
||||||
self.max_tokens: (int |None) = 512
|
self.max_tokens: (int |None) = 512
|
||||||
self.repetition_penalty: float = 1
|
self.repetition_penalty: float = 1
|
||||||
self.stop: (str | List[str] |None) = ['<|endoftext|>','<|im_end|>']
|
self.stop: (str | List[str] |None) = ['<|endoftext|>','<|im_end|>']
|
||||||
|
|
||||||
self.top_k: (int) = None
|
self.top_k: (int) = 40
|
||||||
self.ignore_eos: (bool) = False
|
self.ignore_eos: (bool) = False
|
||||||
self.skip_special_tokens: (bool) = True
|
self.skip_special_tokens: (bool) = True
|
||||||
|
|
||||||
@ -76,11 +79,16 @@ class VLMS(Blackbox):
|
|||||||
"top_k": self.top_k,
|
"top_k": self.top_k,
|
||||||
"ignore_eos": self.ignore_eos,
|
"ignore_eos": self.ignore_eos,
|
||||||
"skip_special_tokens": self.skip_special_tokens,
|
"skip_special_tokens": self.skip_special_tokens,
|
||||||
# "system_prompt":"",
|
|
||||||
# "vlm_model_name":" ",
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
for model, url in self.model_dict.items():
|
||||||
|
try:
|
||||||
|
response = requests.get(url+'/health',timeout=3)
|
||||||
|
if response.status_code == 200:
|
||||||
|
self.available_models[model] = url
|
||||||
|
except Exception as e:
|
||||||
|
# print(e)
|
||||||
|
pass
|
||||||
def __call__(self, *args, **kwargs):
|
def __call__(self, *args, **kwargs):
|
||||||
return self.processing(*args, **kwargs)
|
return self.processing(*args, **kwargs)
|
||||||
|
|
||||||
@ -100,21 +108,30 @@ class VLMS(Blackbox):
|
|||||||
response: a string
|
response: a string
|
||||||
history: a list
|
history: a list
|
||||||
"""
|
"""
|
||||||
|
config: dict = {
|
||||||
|
"lmdeploy_infer":True,
|
||||||
|
"system_prompt":"",
|
||||||
|
"vlm_model_name":"",
|
||||||
|
}
|
||||||
if settings:
|
if settings:
|
||||||
for k in list(settings.keys()):
|
for k in list(settings.keys()):
|
||||||
if k not in self.settings:
|
if k not in self.settings:
|
||||||
print("Warning: '{}' is not a support argument and ignore this argment, check the arguments {}".format(k,self.settings.keys()))
|
print("Warning: '{}' is not a support argument and ignore this argment, check the arguments {}".format(k,self.settings.keys()))
|
||||||
settings.pop(k)
|
config[k] = settings.pop(k)
|
||||||
tmp = copy.deepcopy(self.settings)
|
tmp = copy.deepcopy(self.settings)
|
||||||
tmp.update(settings)
|
tmp.update(settings)
|
||||||
settings = tmp
|
settings = tmp
|
||||||
else:
|
else:
|
||||||
settings = {}
|
settings = {}
|
||||||
|
|
||||||
|
config['lmdeploy_infer'] = str(config['lmdeploy_infer']).strip().lower() == 'true'
|
||||||
|
|
||||||
if not prompt:
|
if not prompt:
|
||||||
prompt = '你是一个辅助机器人,请就此图做一个简短的概括性描述,包括图中的主体物品及状态,不超过50字。' if images else '你好'
|
prompt = '你是一个辅助机器人,请就此图做一个简短的概括性描述,包括图中的主体物品及状态,不超过50字。' if images else '你好'
|
||||||
|
|
||||||
# Transform the images into base64 format where openai format need.
|
# Transform the images into base64 format where openai url)
|
||||||
|
# print(self.config['vlm_model_name'])
|
||||||
|
# print(self.available_models)format need.
|
||||||
if images:
|
if images:
|
||||||
if is_base64(images): # image as base64 str
|
if is_base64(images): # image as base64 str
|
||||||
images_data = images
|
images_data = images
|
||||||
@ -131,7 +148,6 @@ class VLMS(Blackbox):
|
|||||||
# url = 'http://10.6.80.87:8000/' + model_name + '/'
|
# url = 'http://10.6.80.87:8000/' + model_name + '/'
|
||||||
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
|
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
|
||||||
# data = requests.post(url, json=data_input)
|
# data = requests.post(url, json=data_input)
|
||||||
# print(data.text)
|
|
||||||
# return data.text
|
# return data.text
|
||||||
|
|
||||||
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
|
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
|
||||||
@ -157,13 +173,10 @@ class VLMS(Blackbox):
|
|||||||
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
|
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
|
||||||
# }
|
# }
|
||||||
# ]
|
# ]
|
||||||
|
if not user_context and config['system_prompt']: user_context = [{'role':'system','content': config['system_prompt']}]
|
||||||
user_context = self.keep_last_k_images(user_context,k = 1)
|
user_context = self.keep_last_k_images(user_context,k = 1)
|
||||||
if self.model_url is None: self.model_url = self._get_model_url(model_name)
|
# if self.model_url is None: self.model_url = self._get_model_url(model_name)
|
||||||
|
|
||||||
api_client = APIClient(self.model_url)
|
|
||||||
# api_client = APIClient("http://10.6.80.91:23333")
|
|
||||||
model_name = api_client.available_models[0]
|
|
||||||
# Reformat input into openai format to request.
|
# Reformat input into openai format to request.
|
||||||
if images_data:
|
if images_data:
|
||||||
messages = user_context + [{
|
messages = user_context + [{
|
||||||
@ -199,40 +212,60 @@ class VLMS(Blackbox):
|
|||||||
|
|
||||||
responses = ''
|
responses = ''
|
||||||
total_token_usage = 0 # which can be used to count the cost of a query
|
total_token_usage = 0 # which can be used to count the cost of a query
|
||||||
|
model_url = self._get_model_url(config['vlm_model_name'])
|
||||||
|
# print(model_url)
|
||||||
|
# print(self.config['vlm_model_name'])
|
||||||
|
# print(self.available_models)
|
||||||
|
if config['lmdeploy_infer']:
|
||||||
|
api_client = APIClient(model_url)
|
||||||
|
model_name = api_client.available_models[0]
|
||||||
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
|
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
|
||||||
messages=messages,stream = True,
|
messages=messages,stream = True,
|
||||||
**settings,
|
**settings,
|
||||||
# session_id=,
|
# session_id=,
|
||||||
)):
|
)):
|
||||||
# Stream output
|
# Stream output
|
||||||
print(item["choices"][0]["delta"]['content'],end='\n')
|
# print(item["choices"][0]["delta"]['content'],end='\n')
|
||||||
yield item["choices"][0]["delta"]['content']
|
yield item["choices"][0]["delta"]['content']
|
||||||
responses += item["choices"][0]["delta"]['content']
|
responses += item["choices"][0]["delta"]['content']
|
||||||
|
|
||||||
# print(item["choices"][0]["message"]['content'])
|
# print(item["choices"][0]["message"]['content'])
|
||||||
# responses += item["choices"][0]["message"]['content']
|
# responses += item["choices"][0]["message"]['content']
|
||||||
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
|
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
|
||||||
|
else:
|
||||||
|
api_key = "EMPTY_API_KEY"
|
||||||
|
# print(model_url+'/v1')
|
||||||
|
api_client = OpenAI(api_key=api_key, base_url=model_url+'/v1')
|
||||||
|
model_name = api_client.models.list().data[0].id
|
||||||
|
for item in api_client.chat.completions.create(
|
||||||
|
model=model_name,
|
||||||
|
messages=messages,
|
||||||
|
temperature=0.8,
|
||||||
|
top_p=0.8,
|
||||||
|
stream=True):
|
||||||
|
yield(item.choices[0].delta.content)
|
||||||
|
responses += item.choices[0].delta.content
|
||||||
|
# response = api_client.chat.completions.create(
|
||||||
|
# model=model_name,
|
||||||
|
# messages=messages,
|
||||||
|
# temperature=0.8,
|
||||||
|
# top_p=0.8)
|
||||||
|
# print(response.choices[0].message.content)
|
||||||
|
# return response.choices[0].message.content
|
||||||
|
|
||||||
|
|
||||||
user_context = messages + [{'role': 'assistant', 'content': responses}]
|
user_context = messages + [{'role': 'assistant', 'content': responses}]
|
||||||
self.custom_print(user_context)
|
self.custom_print(user_context)
|
||||||
# return responses, user_context
|
# return responses, user_context
|
||||||
|
|
||||||
def _get_model_url(self,model_name:str | None):
|
def _get_model_url(self,model_name:str | None):
|
||||||
available_models = {}
|
if not self.available_models: print("There are no available running models and please check your endpoint urls.")
|
||||||
for model, url in self.model_dict.items():
|
if model_name and model_name in self.available_models:
|
||||||
try:
|
return self.available_models[model_name]
|
||||||
response = requests.get(url,timeout=3)
|
|
||||||
if response.status_code == 200:
|
|
||||||
available_models[model] = url
|
|
||||||
except Exception as e:
|
|
||||||
# print(e)
|
|
||||||
pass
|
|
||||||
if not available_models: print("There are no available running models and please check your endpoint urls.")
|
|
||||||
if model_name and model_name in available_models:
|
|
||||||
return available_models[model_name]
|
|
||||||
else:
|
else:
|
||||||
model = random.choice(list(available_models.keys()))
|
model = random.choice(list(self.available_models.keys()))
|
||||||
print(f"No such model {model_name}, using {model} instead.") if model_name else print(f"Using random model {model}.")
|
print(f"No such model {model_name}, using {model} instead.") if model_name else print(f"Using random model {model}.")
|
||||||
return available_models[model]
|
return self.available_models[model]
|
||||||
|
|
||||||
def _into_openai_format(self, context:List[list]) -> List[dict]:
|
def _into_openai_format(self, context:List[list]) -> List[dict]:
|
||||||
"""
|
"""
|
||||||
|
|||||||
Reference in New Issue
Block a user