mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
feat: vlm support vllm, system prompt, model selection
This commit is contained in:
@ -91,5 +91,8 @@ blackbox:
|
||||
lazyloading: true
|
||||
|
||||
vlms:
|
||||
url: http://10.6.80.87:23333
|
||||
urls:
|
||||
qwen_vl: http://10.6.80.87:8000
|
||||
qwen2_vl: http://10.6.80.87:23333
|
||||
qwen2_vl_72b: http://10.6.80.91:23333
|
||||
```
|
||||
|
||||
@ -24,6 +24,8 @@ import io
|
||||
from PIL import Image
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
|
||||
def is_base64(value) -> bool:
|
||||
try:
|
||||
@ -56,14 +58,15 @@ class VLMS(Blackbox):
|
||||
- skip_special_tokens (bool): Whether or not to remove special tokens
|
||||
in the decoding. Default to be True."""
|
||||
self.model_dict = vlm_config.urls
|
||||
self.model_url = None
|
||||
# self.model_url = None
|
||||
self.available_models = {}
|
||||
self.temperature: float = 0.7
|
||||
self.top_p:float = 1
|
||||
self.max_tokens: (int |None) = 512
|
||||
self.repetition_penalty: float = 1
|
||||
self.stop: (str | List[str] |None) = ['<|endoftext|>','<|im_end|>']
|
||||
|
||||
self.top_k: (int) = None
|
||||
self.top_k: (int) = 40
|
||||
self.ignore_eos: (bool) = False
|
||||
self.skip_special_tokens: (bool) = True
|
||||
|
||||
@ -76,11 +79,16 @@ class VLMS(Blackbox):
|
||||
"top_k": self.top_k,
|
||||
"ignore_eos": self.ignore_eos,
|
||||
"skip_special_tokens": self.skip_special_tokens,
|
||||
# "system_prompt":"",
|
||||
# "vlm_model_name":" ",
|
||||
}
|
||||
|
||||
|
||||
for model, url in self.model_dict.items():
|
||||
try:
|
||||
response = requests.get(url+'/health',timeout=3)
|
||||
if response.status_code == 200:
|
||||
self.available_models[model] = url
|
||||
except Exception as e:
|
||||
# print(e)
|
||||
pass
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.processing(*args, **kwargs)
|
||||
|
||||
@ -100,21 +108,30 @@ class VLMS(Blackbox):
|
||||
response: a string
|
||||
history: a list
|
||||
"""
|
||||
config: dict = {
|
||||
"lmdeploy_infer":True,
|
||||
"system_prompt":"",
|
||||
"vlm_model_name":"",
|
||||
}
|
||||
if settings:
|
||||
for k in list(settings.keys()):
|
||||
if k not in self.settings:
|
||||
print("Warning: '{}' is not a support argument and ignore this argment, check the arguments {}".format(k,self.settings.keys()))
|
||||
settings.pop(k)
|
||||
config[k] = settings.pop(k)
|
||||
tmp = copy.deepcopy(self.settings)
|
||||
tmp.update(settings)
|
||||
settings = tmp
|
||||
else:
|
||||
settings = {}
|
||||
|
||||
config['lmdeploy_infer'] = str(config['lmdeploy_infer']).strip().lower() == 'true'
|
||||
|
||||
if not prompt:
|
||||
prompt = '你是一个辅助机器人,请就此图做一个简短的概括性描述,包括图中的主体物品及状态,不超过50字。' if images else '你好'
|
||||
|
||||
# Transform the images into base64 format where openai format need.
|
||||
# Transform the images into base64 format where openai url)
|
||||
# print(self.config['vlm_model_name'])
|
||||
# print(self.available_models)format need.
|
||||
if images:
|
||||
if is_base64(images): # image as base64 str
|
||||
images_data = images
|
||||
@ -131,7 +148,6 @@ class VLMS(Blackbox):
|
||||
# url = 'http://10.6.80.87:8000/' + model_name + '/'
|
||||
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
|
||||
# data = requests.post(url, json=data_input)
|
||||
# print(data.text)
|
||||
# return data.text
|
||||
|
||||
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
|
||||
@ -157,13 +173,10 @@ class VLMS(Blackbox):
|
||||
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
|
||||
# }
|
||||
# ]
|
||||
|
||||
if not user_context and config['system_prompt']: user_context = [{'role':'system','content': config['system_prompt']}]
|
||||
user_context = self.keep_last_k_images(user_context,k = 1)
|
||||
if self.model_url is None: self.model_url = self._get_model_url(model_name)
|
||||
|
||||
api_client = APIClient(self.model_url)
|
||||
# api_client = APIClient("http://10.6.80.91:23333")
|
||||
model_name = api_client.available_models[0]
|
||||
# if self.model_url is None: self.model_url = self._get_model_url(model_name)
|
||||
|
||||
# Reformat input into openai format to request.
|
||||
if images_data:
|
||||
messages = user_context + [{
|
||||
@ -199,40 +212,60 @@ class VLMS(Blackbox):
|
||||
|
||||
responses = ''
|
||||
total_token_usage = 0 # which can be used to count the cost of a query
|
||||
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
|
||||
model_url = self._get_model_url(config['vlm_model_name'])
|
||||
# print(model_url)
|
||||
# print(self.config['vlm_model_name'])
|
||||
# print(self.available_models)
|
||||
if config['lmdeploy_infer']:
|
||||
api_client = APIClient(model_url)
|
||||
model_name = api_client.available_models[0]
|
||||
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
|
||||
messages=messages,stream = True,
|
||||
**settings,
|
||||
# session_id=,
|
||||
)):
|
||||
# Stream output
|
||||
print(item["choices"][0]["delta"]['content'],end='\n')
|
||||
yield item["choices"][0]["delta"]['content']
|
||||
responses += item["choices"][0]["delta"]['content']
|
||||
# Stream output
|
||||
# print(item["choices"][0]["delta"]['content'],end='\n')
|
||||
yield item["choices"][0]["delta"]['content']
|
||||
responses += item["choices"][0]["delta"]['content']
|
||||
|
||||
# print(item["choices"][0]["message"]['content'])
|
||||
# responses += item["choices"][0]["message"]['content']
|
||||
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
|
||||
# print(item["choices"][0]["message"]['content'])
|
||||
# responses += item["choices"][0]["message"]['content']
|
||||
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
|
||||
else:
|
||||
api_key = "EMPTY_API_KEY"
|
||||
# print(model_url+'/v1')
|
||||
api_client = OpenAI(api_key=api_key, base_url=model_url+'/v1')
|
||||
model_name = api_client.models.list().data[0].id
|
||||
for item in api_client.chat.completions.create(
|
||||
model=model_name,
|
||||
messages=messages,
|
||||
temperature=0.8,
|
||||
top_p=0.8,
|
||||
stream=True):
|
||||
yield(item.choices[0].delta.content)
|
||||
responses += item.choices[0].delta.content
|
||||
# response = api_client.chat.completions.create(
|
||||
# model=model_name,
|
||||
# messages=messages,
|
||||
# temperature=0.8,
|
||||
# top_p=0.8)
|
||||
# print(response.choices[0].message.content)
|
||||
# return response.choices[0].message.content
|
||||
|
||||
|
||||
user_context = messages + [{'role': 'assistant', 'content': responses}]
|
||||
self.custom_print(user_context)
|
||||
# return responses, user_context
|
||||
|
||||
def _get_model_url(self,model_name:str | None):
|
||||
available_models = {}
|
||||
for model, url in self.model_dict.items():
|
||||
try:
|
||||
response = requests.get(url,timeout=3)
|
||||
if response.status_code == 200:
|
||||
available_models[model] = url
|
||||
except Exception as e:
|
||||
# print(e)
|
||||
pass
|
||||
if not available_models: print("There are no available running models and please check your endpoint urls.")
|
||||
if model_name and model_name in available_models:
|
||||
return available_models[model_name]
|
||||
if not self.available_models: print("There are no available running models and please check your endpoint urls.")
|
||||
if model_name and model_name in self.available_models:
|
||||
return self.available_models[model_name]
|
||||
else:
|
||||
model = random.choice(list(available_models.keys()))
|
||||
model = random.choice(list(self.available_models.keys()))
|
||||
print(f"No such model {model_name}, using {model} instead.") if model_name else print(f"Using random model {model}.")
|
||||
return available_models[model]
|
||||
return self.available_models[model]
|
||||
|
||||
def _into_openai_format(self, context:List[list]) -> List[dict]:
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user