Merge pull request #161 from s3ldc/cli-arg-validation

Improve CLI argument validation and help text
This commit is contained in:
xliucs
2026-01-24 13:06:30 +08:00
committed by GitHub

View File

@ -3,30 +3,22 @@
VoxCPM Command Line Interface
Unified CLI for voice cloning, direct TTS synthesis, and batch processing.
Usage examples:
# Direct synthesis (single sample)
voxcpm --text "Hello world" --output output.wav
# Voice cloning (with reference audio and text)
voxcpm --text "Hello world" --prompt-audio voice.wav --prompt-text "reference text" --output output.wav --denoise
# Batch processing (each line in the file is one sample)
voxcpm --input texts.txt --output-dir ./outputs/
"""
import argparse
import os
import sys
from pathlib import Path
from typing import Optional, List
import soundfile as sf
from voxcpm.core import VoxCPM
# -----------------------------
# Validators
# -----------------------------
def validate_file_exists(file_path: str, file_type: str = "file") -> Path:
"""Validate that a file exists."""
path = Path(file_path)
if not path.exists():
raise FileNotFoundError(f"{file_type} '{file_path}' does not exist")
@ -34,47 +26,68 @@ def validate_file_exists(file_path: str, file_type: str = "file") -> Path:
def validate_output_path(output_path: str) -> Path:
"""Validate the output path and create parent directories if needed."""
path = Path(output_path)
path.parent.mkdir(parents=True, exist_ok=True)
return path
def load_model(args) -> VoxCPM:
"""Load VoxCPM model.
def validate_ranges(args, parser):
"""Validate numeric argument ranges."""
if not (0.1 <= args.cfg_value <= 10.0):
parser.error("--cfg-value must be between 0.1 and 10.0")
Prefer --model-path if provided; otherwise use from_pretrained (Hub).
"""
if not (1 <= args.inference_timesteps <= 100):
parser.error("--inference-timesteps must be between 1 and 100")
if args.lora_r <= 0:
parser.error("--lora-r must be a positive integer")
if args.lora_alpha <= 0:
parser.error("--lora-alpha must be a positive integer")
if not (0.0 <= args.lora_dropout <= 1.0):
parser.error("--lora-dropout must be between 0.0 and 1.0")
# -----------------------------
# Model loading
# -----------------------------
def load_model(args) -> VoxCPM:
print("Loading VoxCPM model...", file=sys.stderr)
# 兼容旧参数ZIPENHANCER_MODEL_PATH 环境变量作为默认
zipenhancer_path = getattr(args, "zipenhancer_path", None) or os.environ.get(
"ZIPENHANCER_MODEL_PATH", None
)
# Build LoRA config if lora_path is provided
# Build LoRA config if provided
lora_config = None
lora_weights_path = getattr(args, "lora_path", None)
if lora_weights_path:
from voxcpm.model.voxcpm import LoRAConfig
lora_config = LoRAConfig(
enable_lm=getattr(args, "lora_enable_lm", True),
enable_dit=getattr(args, "lora_enable_dit", True),
enable_proj=getattr(args, "lora_enable_proj", False),
r=getattr(args, "lora_r", 32),
alpha=getattr(args, "lora_alpha", 16),
dropout=getattr(args, "lora_dropout", 0.0),
)
print(f"LoRA config: r={lora_config.r}, alpha={lora_config.alpha}, "
f"lm={lora_config.enable_lm}, dit={lora_config.enable_dit}, proj={lora_config.enable_proj}", file=sys.stderr)
# Load from local path if provided
if getattr(args, "model_path", None):
lora_config = LoRAConfig(
enable_lm=not args.lora_disable_lm,
enable_dit=not args.lora_disable_dit,
enable_proj=args.lora_enable_proj,
r=args.lora_r,
alpha=args.lora_alpha,
dropout=args.lora_dropout,
)
print(
f"LoRA config: r={lora_config.r}, alpha={lora_config.alpha}, "
f"lm={lora_config.enable_lm}, dit={lora_config.enable_dit}, proj={lora_config.enable_proj}",
file=sys.stderr,
)
# Load local model if specified
if args.model_path:
try:
model = VoxCPM(
voxcpm_model_path=args.model_path,
zipenhancer_model_path=zipenhancer_path,
enable_denoiser=not getattr(args, "no_denoiser", False),
enable_denoiser=not args.no_denoiser,
lora_config=lora_config,
lora_weights_path=lora_weights_path,
)
@ -84,14 +97,14 @@ def load_model(args) -> VoxCPM:
print(f"Failed to load model (local): {e}", file=sys.stderr)
sys.exit(1)
# Otherwise, try from_pretrained (Hub); exit on failure
# Load from Hugging Face Hub
try:
model = VoxCPM.from_pretrained(
hf_model_id=getattr(args, "hf_model_id", "openbmb/VoxCPM1.5"),
load_denoiser=not getattr(args, "no_denoiser", False),
hf_model_id=args.hf_model_id,
load_denoiser=not args.no_denoiser,
zipenhancer_model_id=zipenhancer_path,
cache_dir=getattr(args, "cache_dir", None),
local_files_only=getattr(args, "local_files_only", False),
cache_dir=args.cache_dir,
local_files_only=args.local_files_only,
lora_config=lora_config,
lora_weights_path=lora_weights_path,
)
@ -102,33 +115,22 @@ def load_model(args) -> VoxCPM:
sys.exit(1)
# -----------------------------
# Commands
# -----------------------------
def cmd_clone(args):
"""Voice cloning command."""
# Validate inputs
if not args.text:
print("Error: Please provide text to synthesize (--text)", file=sys.stderr)
sys.exit(1)
sys.exit("Error: Please provide --text for synthesis")
if not args.prompt_audio:
print("Error: Voice cloning requires a reference audio (--prompt-audio)", file=sys.stderr)
sys.exit(1)
if not args.prompt_audio or not args.prompt_text:
sys.exit("Error: Voice cloning requires both --prompt-audio and --prompt-text")
if not args.prompt_text:
print("Error: Voice cloning requires a reference text (--prompt-text)", file=sys.stderr)
sys.exit(1)
# Validate files
prompt_audio_path = validate_file_exists(args.prompt_audio, "reference audio file")
output_path = validate_output_path(args.output)
# Load model
model = load_model(args)
# Generate audio
print(f"Synthesizing text: {args.text}", file=sys.stderr)
print(f"Reference audio: {prompt_audio_path}", file=sys.stderr)
print(f"Reference text: {args.prompt_text}", file=sys.stderr)
audio_array = model.generate(
text=args.text,
prompt_wav_path=str(prompt_audio_path),
@ -136,30 +138,21 @@ def cmd_clone(args):
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
normalize=args.normalize,
denoise=args.denoise
denoise=args.denoise,
)
# Save audio
sf.write(str(output_path), audio_array, model.tts_model.sample_rate)
print(f"Saved audio to: {output_path}", file=sys.stderr)
# Stats
duration = len(audio_array) / model.tts_model.sample_rate
print(f"Duration: {duration:.2f}s", file=sys.stderr)
print(f"Saved audio to: {output_path} ({duration:.2f}s)", file=sys.stderr)
def cmd_synthesize(args):
"""Direct TTS synthesis command."""
# Validate inputs
if not args.text:
print("Error: Please provide text to synthesize (--text)", file=sys.stderr)
sys.exit(1)
# Validate output path
sys.exit("Error: Please provide --text for synthesis")
output_path = validate_output_path(args.output)
# Load model
model = load_model(args)
# Generate audio
print(f"Synthesizing text: {args.text}", file=sys.stderr)
audio_array = model.generate(
text=args.text,
@ -168,45 +161,35 @@ def cmd_synthesize(args):
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
normalize=args.normalize,
denoise=False # 无参考音频时不需要降噪
denoise=False,
)
# Save audio
sf.write(str(output_path), audio_array, model.tts_model.sample_rate)
print(f"Saved audio to: {output_path}", file=sys.stderr)
# Stats
duration = len(audio_array) / model.tts_model.sample_rate
print(f"Duration: {duration:.2f}s", file=sys.stderr)
print(f"Saved audio to: {output_path} ({duration:.2f}s)", file=sys.stderr)
def cmd_batch(args):
"""Batch synthesis command."""
# Validate input file
input_file = validate_file_exists(args.input, "input file")
output_dir = Path(args.output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
try:
with open(input_file, 'r', encoding='utf-8') as f:
with open(input_file, "r", encoding="utf-8") as f:
texts = [line.strip() for line in f if line.strip()]
except Exception as e:
print(f"Failed to read input file: {e}", file=sys.stderr)
sys.exit(1)
if not texts:
print("Error: Input file is empty or contains no valid lines", file=sys.stderr)
sys.exit(1)
print(f"Found {len(texts)} lines to process", file=sys.stderr)
sys.exit("Error: Input file is empty")
model = load_model(args)
prompt_audio_path = None
if args.prompt_audio:
prompt_audio_path = str(validate_file_exists(args.prompt_audio, "reference audio file"))
success_count = 0
for i, text in enumerate(texts, 1):
print(f"\nProcessing {i}/{len(texts)}: {text[:50]}...", file=sys.stderr)
for i, text in enumerate(texts, 1):
try:
audio_array = model.generate(
text=text,
@ -215,8 +198,9 @@ def cmd_batch(args):
cfg_value=args.cfg_value,
inference_timesteps=args.inference_timesteps,
normalize=args.normalize,
denoise=args.denoise and prompt_audio_path is not None
denoise=args.denoise and prompt_audio_path is not None,
)
output_file = output_dir / f"output_{i:03d}.wav"
sf.write(str(output_file), audio_array, model.tts_model.sample_rate)
@ -225,102 +209,98 @@ def cmd_batch(args):
success_count += 1
except Exception as e:
print(f" Failed: {e}", file=sys.stderr)
continue
print(f"Failed on line {i}: {e}", file=sys.stderr)
print(f"\nBatch finished: {success_count}/{len(texts)} succeeded", file=sys.stderr)
# -----------------------------
# Parser
# -----------------------------
def _build_unified_parser():
"""Build unified argument parser (no subcommands, route by args)."""
parser = argparse.ArgumentParser(
description="VoxCPM CLI (single parser) - voice cloning, direct TTS, and batch processing",
description="VoxCPM CLI - voice cloning, direct TTS, and batch processing",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Direct synthesis (single sample)
voxcpm --text "Hello world" --output out.wav
# Voice cloning (reference audio + text)
voxcpm --text "Hello world" --prompt-audio voice.wav --prompt-text "reference text" --output out.wav --denoise
# Batch processing
voxcpm --text "Hello" --prompt-audio ref.wav --prompt-text "hi" --output out.wav --denoise
voxcpm --input texts.txt --output-dir ./outs
# Select model (from Hub)
voxcpm --text "Hello" --output out.wav --hf-model-id openbmb/VoxCPM-0.5B
"""
""",
)
# Task selection (automatic routing by presence of args)
parser.add_argument("--input", "-i", help="Input text file (one line per sample)")
parser.add_argument("--output-dir", "-od", help="Output directory (for batch mode)")
parser.add_argument("--text", "-t", help="Text to synthesize (single-sample mode)")
parser.add_argument("--output", "-o", help="Output audio file path (single-sample mode)")
# Mode selection
parser.add_argument("--input", "-i", help="Input text file (batch mode only)")
parser.add_argument("--output-dir", "-od", help="Output directory (batch mode only)")
parser.add_argument("--text", "-t", help="Text to synthesize (single or clone mode)")
parser.add_argument("--output", "-o", help="Output audio file path (single or clone mode)")
# Prompt audio (for voice cloning)
parser.add_argument("--prompt-audio", "-pa", help="Reference audio file path")
# Prompt
parser.add_argument("--prompt-audio", "-pa", help="Reference audio file path (clone mode)")
parser.add_argument("--prompt-text", "-pt", help="Reference text corresponding to the audio")
parser.add_argument("--prompt-file", "-pf", help="Reference text file corresponding to the audio")
parser.add_argument("--denoise", action="store_true", help="Enable prompt speech enhancement (denoising)")
parser.add_argument("--denoise", action="store_true", help="Enable prompt speech enhancement")
# Generation parameters
parser.add_argument("--cfg-value", type=float, default=2.0, help="CFG guidance scale (default: 2.0)")
parser.add_argument("--inference-timesteps", type=int, default=10, help="Inference steps (default: 10)")
parser.add_argument("--cfg-value", type=float, default=2.0,
help="CFG guidance scale (float, recommended 0.55.0, default: 2.0)")
parser.add_argument("--inference-timesteps", type=int, default=10,
help="Inference steps (int, 1100, default: 10)")
parser.add_argument("--normalize", action="store_true", help="Enable text normalization")
# Model loading parameters
parser.add_argument("--model-path", type=str, help="Local VoxCPM model path (overrides Hub download)")
parser.add_argument("--hf-model-id", type=str, default="openbmb/VoxCPM1.5", help="Hugging Face repo id (e.g., openbmb/VoxCPM1.5 or openbmb/VoxCPM-0.5B)")
# Model loading
parser.add_argument("--model-path", type=str, help="Local VoxCPM model path")
parser.add_argument("--hf-model-id", type=str, default="openbmb/VoxCPM1.5",
help="Hugging Face repo id (default: openbmb/VoxCPM1.5)")
parser.add_argument("--cache-dir", type=str, help="Cache directory for Hub downloads")
parser.add_argument("--local-files-only", action="store_true", help="Use only local files (no network)")
parser.add_argument("--local-files-only", action="store_true", help="Disable network access")
parser.add_argument("--no-denoiser", action="store_true", help="Disable denoiser model loading")
parser.add_argument("--zipenhancer-path", type=str, default="iic/speech_zipenhancer_ans_multiloss_16k_base", help="ZipEnhancer model id or local path (default reads from env)")
parser.add_argument("--zipenhancer-path", type=str,
help="ZipEnhancer model id or local path (or env ZIPENHANCER_MODEL_PATH)")
# LoRA parameters
parser.add_argument("--lora-path", type=str, help="Path to LoRA weights (.pth file or directory containing lora_weights.ckpt)")
parser.add_argument("--lora-r", type=int, default=32, help="LoRA rank (default: 32)")
parser.add_argument("--lora-alpha", type=int, default=16, help="LoRA alpha scaling factor (default: 16)")
parser.add_argument("--lora-dropout", type=float, default=0.0, help="LoRA dropout rate (default: 0.0)")
parser.add_argument("--lora-enable-lm", action="store_true", default=True, help="Apply LoRA to LM layers (default: True)")
parser.add_argument("--lora-enable-dit", action="store_true", default=True, help="Apply LoRA to DiT layers (default: True)")
parser.add_argument("--lora-enable-proj", action="store_true", default=False, help="Apply LoRA to projection layers (default: False)")
# LoRA
parser.add_argument("--lora-path", type=str, help="Path to LoRA weights")
parser.add_argument("--lora-r", type=int, default=32, help="LoRA rank (positive int, default: 32)")
parser.add_argument("--lora-alpha", type=int, default=16, help="LoRA alpha (positive int, default: 16)")
parser.add_argument("--lora-dropout", type=float, default=0.0,
help="LoRA dropout rate (0.01.0, default: 0.0)")
parser.add_argument("--lora-disable-lm", action="store_true", help="Disable LoRA on LM layers")
parser.add_argument("--lora-disable-dit", action="store_true", help="Disable LoRA on DiT layers")
parser.add_argument("--lora-enable-proj", action="store_true", help="Enable LoRA on projection layers")
return parser
# -----------------------------
# Entrypoint
# -----------------------------
def main():
"""Unified CLI entrypoint: route by provided arguments."""
parser = _build_unified_parser()
args = parser.parse_args()
# Routing: prefer batch → single (clone/direct)
# Validate ranges
validate_ranges(args, parser)
# Mode conflict checks
if args.input and args.text:
parser.error("Use either batch mode (--input) or single mode (--text), not both.")
# Batch mode
if args.input:
if not args.output_dir:
print("Error: Batch mode requires --output-dir", file=sys.stderr)
parser.print_help()
sys.exit(1)
parser.error("Batch mode requires --output-dir")
return cmd_batch(args)
# Single-sample mode
# Single mode
if not args.text or not args.output:
print("Error: Single-sample mode requires --text and --output", file=sys.stderr)
parser.print_help()
sys.exit(1)
parser.error("Single-sample mode requires --text and --output")
# If prompt audio+text provided → voice cloning
# Clone mode
if args.prompt_audio or args.prompt_text:
if not args.prompt_text and args.prompt_file:
assert os.path.isfile(args.prompt_file), "Prompt file does not exist or is not accessible."
with open(args.prompt_file, 'r', encoding='utf-8') as f:
args.prompt_text = f.read()
if not args.prompt_audio or not args.prompt_text:
print("Error: Voice cloning requires both --prompt-audio and --prompt-text", file=sys.stderr)
sys.exit(1)
return cmd_clone(args)
# Otherwise → direct synthesis
# Direct synthesis
return cmd_synthesize(args)