Files
Fun-ASR/tools/utils.py
pengzhendong 64e4d92a35 fix warning
2026-01-25 22:59:46 +08:00

58 lines
2.1 KiB
Python

from itertools import groupby
import soundfile as sf
import torch
import torchaudio
import torchaudio.functional as F
def load_audio(wav_path, rate: int = None, offset: float = 0, duration: float = None):
with sf.SoundFile(wav_path) as f:
start_frame = int(offset * f.samplerate)
if duration is None:
frames_to_read = f.frames - start_frame
else:
frames_to_read = int(duration * f.samplerate)
f.seek(start_frame)
audio_data = f.read(frames_to_read, dtype="float32")
audio_tensor = torch.from_numpy(audio_data)
if rate is not None and f.samplerate != rate:
if audio_tensor.ndim == 1:
audio_tensor = audio_tensor.unsqueeze(0)
else:
audio_tensor = audio_tensor.T
resampler = torchaudio.transforms.Resample(orig_freq=f.samplerate, new_freq=rate)
audio_tensor = resampler(audio_tensor)
if audio_tensor.shape[0] == 1:
audio_tensor = audio_tensor.squeeze(0)
return audio_tensor, rate if rate is not None else f.samplerate
def forced_align(log_probs: torch.Tensor, targets: torch.Tensor, blank: int = 0):
items = []
try:
# The current version only supports batch_size==1.
log_probs, targets = log_probs.unsqueeze(0).cpu(), targets.unsqueeze(0).cpu()
assert log_probs.shape[1] >= targets.shape[1]
alignments, scores = F.forced_align(log_probs, targets, blank=blank)
alignments, scores = alignments[0], torch.exp(scores[0]).tolist()
# use enumerate to keep track of the original indices, then group by token value
for token, group in groupby(enumerate(alignments), key=lambda item: item[1]):
if token == blank:
continue
group = list(group)
start = group[0][0]
end = start + len(group)
score = max(scores[start:end])
items.append(
{
"token": token.item(),
"start_time": start,
"end_time": end,
"score": round(score, 3),
}
)
except:
pass
return items