Files
Fun-ASR/demo2.py
2026-01-25 23:26:38 +08:00

42 lines
1.2 KiB
Python
Raw Permalink Blame History

import numpy as np
import soundfile as sf
import torch
from model import FunASRNano
from tools.utils import load_audio
def main():
model_dir = "FunAudioLLM/Fun-ASR-Nano-2512"
device = (
"cuda:0"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
m, kwargs = FunASRNano.from_pretrained(model=model_dir, device=device)
tokenizer = kwargs.get("tokenizer", None)
m.eval()
wav_path = f"{kwargs['model_path']}/example/zh.mp3"
res = m.inference(data_in=[wav_path], **kwargs)
text = res[0][0]
print(text)
chunk_size = 0.72
duration = sf.info(wav_path).duration
cum_durations = np.arange(chunk_size, duration + chunk_size, chunk_size)
prev_text = ""
for idx, cum_duration in enumerate(cum_durations):
audio, rate = load_audio(wav_path, 16000, duration=round(cum_duration, 3))
prev_text = m.inference([torch.tensor(audio)], prev_text=prev_text, **kwargs)[0][0]["text"]
if idx != len(cum_durations) - 1:
prev_text = tokenizer.decode(tokenizer.encode(prev_text)[:-5]).replace("<EFBFBD>", "")
if prev_text:
print(prev_text)
if __name__ == "__main__":
main()