from itertools import groupby import torch import torchaudio.functional as F def forced_align(log_probs: torch.Tensor, targets: torch.Tensor, blank: int = 0): items = [] try: # The current version only supports batch_size==1. log_probs, targets = log_probs.unsqueeze(0).cpu(), targets.unsqueeze(0).cpu() assert log_probs.shape[1] >= targets.shape[1] alignments, scores = F.forced_align(log_probs, targets, blank=blank) alignments, scores = alignments[0], torch.exp(scores[0]).tolist() # use enumerate to keep track of the original indices, then group by token value for token, group in groupby(enumerate(alignments), key=lambda item: item[1]): if token == blank: continue group = list(group) start = group[0][0] end = start + len(group) score = max(scores[start:end]) items.append( { "token": token.item(), "start_time": start, "end_time": end, "score": round(score, 3), } ) except: pass return items