Files
ocdp_chart/webui/open-webui/charts/ollama/.ollama-helm/values.yaml
2025-09-23 10:01:17 +08:00

441 lines
11 KiB
YAML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Default values for ollama-helm.
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.
# -- Number of replicas
replicaCount: 1
# Knative configuration
knative:
# -- Enable Knative integration
enabled: false
# -- Knative service container concurrency
containerConcurrency: 0
# -- Knative service timeout seconds
timeoutSeconds: 300
# -- Knative service response start timeout seconds
responseStartTimeoutSeconds: 300
# -- Knative service idle timeout seconds
idleTimeoutSeconds: 300
# -- Knative service annotations
annotations: {}
# Docker image
image:
# -- Docker image registry
repository: ollama/ollama
# -- Docker pull policy
pullPolicy: IfNotPresent
# -- Docker image tag, overrides the image tag whose default is the chart appVersion.
tag: ""
# -- Docker registry secret names as an array
imagePullSecrets: []
# -- String to partially override template (will maintain the release name)
nameOverride: ""
# -- String to fully override template
fullnameOverride: ""
# -- String to fully override namespace
namespaceOverride: ""
# Ollama parameters
ollama:
# Port Ollama is listening on
port: 11434
gpu:
# -- Enable GPU integration
enabled: false
# -- Enable DRA GPU integration
# If enabled, it will use DRA instead of Device Driver Plugin and create a ResourceClaim and GpuClaimParameters
draEnabled: false
# -- DRA GPU DriverClass
draDriverClass: "gpu.nvidia.com"
# -- Existing DRA GPU ResourceClaim Template
draExistingClaimTemplate: ""
# -- GPU type: 'nvidia' or 'amd'
# If 'ollama.gpu.enabled', default value is nvidia
# If set to 'amd', this will add 'rocm' suffix to image tag if 'image.tag' is not override
# This is due cause AMD and CPU/CUDA are different images
type: 'nvidia'
# -- Specify the number of GPU
# If you use MIG section below then this parameter is ignored
number: 1
# -- only for nvidia cards; change to (example) 'nvidia.com/mig-1g.10gb' to use MIG slice
nvidiaResource: "nvidia.com/gpu"
# nvidiaResource: "nvidia.com/mig-1g.10gb" # example
# If you want to use more than one NVIDIA MIG you can use the following syntax (then nvidiaResource is ignored and only the configuration in the following MIG section is used)
mig:
# -- Enable multiple mig devices
# If enabled you will have to specify the mig devices
# If enabled is set to false this section is ignored
enabled: false
# -- Specify the mig devices and the corresponding number
devices: {}
# 1g.10gb: 1
# 3g.40gb: 1
models:
# -- List of models to pull at container startup
# The more you add, the longer the container will take to start if models are not present
# pull:
# - llama2
# - mistral
pull: []
# -- List of models to load in memory at container startup
# run:
# - llama2
# - mistral
run: []
# -- List of models to create at container startup, there are two options
# 1. Create a raw model
# 2. Load a model from configMaps, configMaps must be created before and are loaded as volume in "/models" directory.
# create:
# - name: llama3.1-ctx32768
# configMapRef: my-configmap
# configMapKeyRef: configmap-key
# - name: llama3.1-ctx32768
# template: |
# FROM llama3.1
# PARAMETER num_ctx 32768
create: []
# -- Automatically remove models present on the disk but not specified in the values file
clean: false
# -- Add insecure flag for pulling at container startup
insecure: false
# -- Override ollama-data volume mount path, default: "/root/.ollama"
mountPath: ""
# Service account
# ref: https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-account/
serviceAccount:
# -- Specifies whether a service account should be created
create: true
# -- Automatically mount a ServiceAccount's API credentials?
automount: true
# -- Annotations to add to the service account
annotations: {}
# -- The name of the service account to use.
# If not set and create is true, a name is generated using the fullname template
name: ""
# -- Map of annotations to add to the pods
podAnnotations: {}
# -- Map of labels to add to the pods
podLabels: {}
# -- Pod Security Context
podSecurityContext: {}
# fsGroup: 2000
# -- Priority Class Name
priorityClassName: ""
# -- Container Security Context
securityContext: {}
# capabilities:
# drop:
# - ALL
# readOnlyRootFilesystem: true
# runAsNonRoot: true
# runAsUser: 1000
# -- Specify runtime class
runtimeClassName: ""
# Configure Service
service:
# -- Service type
type: ClusterIP
# -- Service port
port: 11434
# -- Service node port when service type is 'NodePort'
nodePort: 31434
# -- Load Balancer IP address
loadBalancerIP:
# -- Annotations to add to the service
annotations: {}
# -- Labels to add to the service
labels: {}
# Configure Deployment
deployment:
# -- Labels to add to the deployment
labels: {}
# Configure the ingress resource that allows you to access the
ingress:
# -- Enable ingress controller resource
enabled: false
# -- IngressClass that will be used to implement the Ingress (Kubernetes 1.18+)
className: ""
# -- Additional annotations for the Ingress resource.
annotations: {}
# kubernetes.io/ingress.class: traefik
# kubernetes.io/ingress.class: nginx
# kubernetes.io/tls-acme: "true"
# The list of hostnames to be covered with this ingress record.
hosts:
- host: ollama.local
paths:
- path: /
pathType: Prefix
# -- The tls configuration for hostnames to be covered with this ingress record.
tls: []
# - secretName: chart-example-tls
# hosts:
# - chart-example.local
# Configure resource requests and limits
# ref: http://kubernetes.io/docs/user-guide/compute-resources/
resources:
# -- Pod requests
requests: {}
# Memory request
# memory: 4096Mi
# CPU request
# cpu: 2000m
# -- Pod limit
limits: {}
# Memory limit
# memory: 8192Mi
# CPU limit
# cpu: 4000m
# Configure extra options for liveness probe
# ref: https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#configure-probes
livenessProbe:
# -- Enable livenessProbe
enabled: true
# -- Request path for livenessProbe
path: /
# -- Initial delay seconds for livenessProbe
initialDelaySeconds: 60
# -- Period seconds for livenessProbe
periodSeconds: 10
# -- Timeout seconds for livenessProbe
timeoutSeconds: 5
# -- Failure threshold for livenessProbe
failureThreshold: 6
# -- Success threshold for livenessProbe
successThreshold: 1
# Configure extra options for readiness probe
# ref: https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/#configure-probes
readinessProbe:
# -- Enable readinessProbe
enabled: true
# -- Request path for readinessProbe
path: /
# -- Initial delay seconds for readinessProbe
initialDelaySeconds: 30
# -- Period seconds for readinessProbe
periodSeconds: 5
# -- Timeout seconds for readinessProbe
timeoutSeconds: 3
# -- Failure threshold for readinessProbe
failureThreshold: 6
# -- Success threshold for readinessProbe
successThreshold: 1
# Configure autoscaling
autoscaling:
# -- Enable autoscaling
enabled: false
# -- Number of minimum replicas
minReplicas: 1
# -- Number of maximum replicas
maxReplicas: 100
# -- CPU usage to target replica
targetCPUUtilizationPercentage: 80
# -- targetMemoryUtilizationPercentage: 80
# -- Additional volumes on the output Deployment definition.
volumes: []
# -- - name: foo
# secret:
# secretName: mysecret
# optional: false
# -- Additional volumeMounts on the output Deployment definition.
volumeMounts: []
# -- - name: foo
# mountPath: "/etc/foo"
# readOnly: true
# -- Additional arguments on the output Deployment definition.
extraArgs: []
# -- Additional environments variables on the output Deployment definition.
# For extra OLLAMA env, please refer to https://github.com/ollama/ollama/blob/main/envconfig/config.go
extraEnv: []
# - name: OLLAMA_DEBUG
# value: "1"
# -- Additionl environment variables from external sources (like ConfigMap)
extraEnvFrom: []
# - configMapRef:
# name: my-env-configmap
# Enable persistence using Persistent Volume Claims
# ref: https://kubernetes.io/docs/concepts/storage/persistent-volumes/
persistentVolume:
# -- Enable persistence using PVC
enabled: false
# -- Ollama server data Persistent Volume access modes
# Must match those of existing PV or dynamic provisioner
# Ref: http://kubernetes.io/docs/user-guide/persistent-volumes/
accessModes:
- ReadWriteOnce
# -- Ollama server data Persistent Volume annotations
annotations: {}
# -- If you'd like to bring your own PVC for persisting Ollama state, pass the name of the
# created + ready PVC here. If set, this Chart will not create the default PVC.
# Requires server.persistentVolume.enabled: true
existingClaim: ""
# -- Ollama server data Persistent Volume size
size: 30Gi
# -- Ollama server data Persistent Volume Storage Class
# If defined, storageClassName: <storageClass>
# If set to "-", storageClassName: "", which disables dynamic provisioning
# If undefined (the default) or set to null, no storageClassName spec is
# set, choosing the default provisioner. (gp2 on AWS, standard on
# GKE, AWS & OpenStack)
storageClass: ""
# -- Ollama server data Persistent Volume Binding Mode
# If defined, volumeMode: <volumeMode>
# If empty (the default) or set to null, no volumeBindingMode spec is
# set, choosing the default mode.
volumeMode: ""
# -- Subdirectory of Ollama server data Persistent Volume to mount
# Useful if the volume's root directory is not empty
subPath: ""
# -- Pre-existing PV to attach this claim to
# Useful if a CSI auto-provisions a PV for you and you want to always
# reference the PV moving forward
volumeName: ""
# -- Node labels for pod assignment.
nodeSelector: {}
# -- Tolerations for pod assignment
tolerations: []
# -- Affinity for pod assignment
affinity: {}
# -- Lifecycle for pod assignment (override ollama.models startup pull/run)
lifecycle: {}
# How to replace existing pods
updateStrategy:
# -- Deployment strategy can be "Recreate" or "RollingUpdate". Default is Recreate
type: "Recreate"
# -- Topology Spread Constraints for pod assignment
topologySpreadConstraints: {}
# -- Wait for a grace period
terminationGracePeriodSeconds: 120
# -- Init containers to add to the pod
initContainers: []
# - name: startup-tool
# image: alpine:3
# command: [sh, -c]
# args:
# - echo init
# -- Use the hosts ipc namespace.
hostIPC: false
# -- Use the hosts pid namespace
hostPID: false
# -- Use the host's network namespace.
hostNetwork: false
# -- Extra K8s manifests to deploy
extraObjects: []
# - apiVersion: v1
# kind: PersistentVolume
# metadata:
# name: aws-efs
# data:
# key: "value"
# - apiVersion: scheduling.k8s.io/v1
# kind: PriorityClass
# metadata:
# name: high-priority
# value: 1000000
# globalDefault: false
# description: "This priority class should be used for XYZ service pods only."
# Test connection pods
tests:
enabled: true
# -- Labels to add to the tests
labels: {}
# -- Annotations to add to the tests
annotations: {}