Files
ocdp_chart/vllm/vllm-serve/values.yaml

77 lines
1.9 KiB
YAML

# Default values for vllm-app.
# This is a YAML-formatted file.
# Declare variables to be passed into your templates.
# This is for the secrets for pulling an image from a private repository more information can be found here: https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
imagePullSecrets: []
imagePullPolicy: IfNotPresent
# This is to override the chart name.
nameOverride: ""
fullnameOverride: ""
# This section builds out the service account more information can be found here: https://kubernetes.io/docs/concepts/security/service-accounts/
serviceAccount:
# Specifies whether a service account should be created
create: true
# Automatically mount a ServiceAccount's API credentials?
automount: true
# Annotations to add to the service account
annotations: {}
# The name of the service account to use.
# If not set and create is true, a name is generated using the fullname template
name: ""
# 模型配置
model:
huggingfaceName: "Qwen/Qwen2.5-0.5B-Instruct" # 用户只需输入这个
localMountPath: "/Model" # PVC 固定挂载路径
huggingfaceToken: "<your-hf-token>"
download: # 启用自动下载
image: "docker.io/vllm/vllm-openai:latest" # 包含 huggingface-cli 的镜像
# 功能选择
command: ""
resources:
gpuLimit: 1
cpuRequest: 12
memoryLimit: "16Gi"
shmSize: "20Gi"
svc:
type: NodePort
port: 80
targetPort: 8080
nodePort: 30080
# vLLM 应用配置
vllm:
image: "docker.io/vllm/vllm-openai:latest"
llama:
image: "docker.io/library/one-click:v1"
# lmdeploy 应用配置
lmdeploy:
image: "docker.io/openmmlab/lmdeploy:latest-cu12"
# NFS PV/PVC 配置
nfs:
server: "172.19.207.21"
path: "/volume1/datasets/storage/models/Weight"
storageClass: "local-path"
pvSize: "500Gi"
pvcSize: "50Gi"
# LeaderWorkerSet 配置
replicaCount: 1
workerSize: 1
nodeSelector: {}
tolerations: []
affinity: {}