mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
143 lines
4.7 KiB
Plaintext
143 lines
4.7 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"%matplotlib inline\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import IPython.display as ipd\n",
|
|
"\n",
|
|
"import os\n",
|
|
"import json\n",
|
|
"import math\n",
|
|
"import torch\n",
|
|
"from torch import nn\n",
|
|
"from torch.nn import functional as F\n",
|
|
"from torch.utils.data import DataLoader\n",
|
|
"\n",
|
|
"import ../commons\n",
|
|
"import ../utils\n",
|
|
"from ../data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate\n",
|
|
"from ../models import SynthesizerTrn\n",
|
|
"from ../text.symbols import symbols\n",
|
|
"from ../text import text_to_sequence\n",
|
|
"\n",
|
|
"from scipy.io.wavfile import write\n",
|
|
"\n",
|
|
"\n",
|
|
"def get_text(text, hps):\n",
|
|
" text_norm = text_to_sequence(text, hps.data.text_cleaners)\n",
|
|
" if hps.data.add_blank:\n",
|
|
" text_norm = commons.intersperse(text_norm, 0)\n",
|
|
" text_norm = torch.LongTensor(text_norm)\n",
|
|
" return text_norm"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#############################################################\n",
|
|
"# #\n",
|
|
"# Single Speakers #\n",
|
|
"# #\n",
|
|
"#############################################################"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"hps = utils.get_hparams_from_file(\"configs/XXX.json\") #将\"\"内的内容修改为你的模型路径与config路径\n",
|
|
"net_g = SynthesizerTrn(\n",
|
|
" len(symbols),\n",
|
|
" hps.data.filter_length // 2 + 1,\n",
|
|
" hps.train.segment_size // hps.data.hop_length,\n",
|
|
" **hps.model).cuda()\n",
|
|
"_ = net_g.eval()\n",
|
|
"\n",
|
|
"_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"stn_tst = get_text(\"こんにちは\", hps)\n",
|
|
"with torch.no_grad():\n",
|
|
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
|
|
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
|
|
" traced_mod = torch.jit.trace(net_g,(x_tst, x_tst_lengths,sid))\n",
|
|
" torch.jit.save(traced_mod,\"OUTPUTLIBTORCHMODEL.pt\")\n",
|
|
" audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
|
|
"ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#############################################################\n",
|
|
"# #\n",
|
|
"# Multiple Speakers #\n",
|
|
"# #\n",
|
|
"#############################################################"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"hps = utils.get_hparams_from_file(\"./configs/XXX.json\") #将\"\"内的内容修改为你的模型路径与config路径\n",
|
|
"net_g = SynthesizerTrn(\n",
|
|
" len(symbols),\n",
|
|
" hps.data.filter_length // 2 + 1,\n",
|
|
" hps.train.segment_size // hps.data.hop_length,\n",
|
|
" n_speakers=hps.data.n_speakers,\n",
|
|
" **hps.model).cuda()\n",
|
|
"_ = net_g.eval()\n",
|
|
"\n",
|
|
"_ = utils.load_checkpoint(\"/path/to/model.pth\", net_g, None)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"stn_tst = get_text(\"こんにちは\", hps)\n",
|
|
"with torch.no_grad():\n",
|
|
" x_tst = stn_tst.cuda().unsqueeze(0)\n",
|
|
" x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()\n",
|
|
" sid = torch.LongTensor([4]).cuda()\n",
|
|
" traced_mod = torch.jit.trace(net_g,(x_tst, x_tst_lengths,sid))\n",
|
|
" torch.jit.save(traced_mod,\"OUTPUTLIBTORCHMODEL.pt\")\n",
|
|
" audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()\n",
|
|
"ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"language_info": {
|
|
"name": "python"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|