mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
179 lines
7.3 KiB
Python
Executable File
179 lines
7.3 KiB
Python
Executable File
from typing import Any, Coroutine
|
|
|
|
from fastapi import Request, Response, status
|
|
from fastapi.responses import JSONResponse
|
|
import numpy as np
|
|
from .blackbox import Blackbox
|
|
|
|
import chromadb
|
|
from chromadb.utils import embedding_functions
|
|
import logging
|
|
from ..log.logging_time import logging_time
|
|
import re
|
|
from sentence_transformers import CrossEncoder
|
|
|
|
from pathlib import Path
|
|
from ..configuration import Configuration
|
|
from ..configuration import PathConf
|
|
|
|
logger = logging.getLogger
|
|
DEFAULT_COLLECTION_ID = "123"
|
|
|
|
from injector import singleton
|
|
@singleton
|
|
class ChromaQuery(Blackbox):
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
# config = read_yaml(args[0])
|
|
# load chromadb and embedding model
|
|
|
|
path = PathConf(Configuration())
|
|
self.model_path = Path(path.chroma_rerank_embedding_model)
|
|
|
|
self.embedding_model_1 = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=str(self.model_path / "bge-large-zh-v1.5"), device = "cuda:0")
|
|
self.embedding_model_2 = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=str(self.model_path / "bge-small-en-v1.5"), device = "cuda:0")
|
|
self.embedding_model_3 = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=str(self.model_path / "bge-m3"), device = "cuda:0")
|
|
self.client_1 = chromadb.HttpClient(host='localhost', port=7000)
|
|
# self.client_2 = chromadb.HttpClient(host='10.6.82.192', port=8000)
|
|
self.reranker_model_1 = CrossEncoder(str(self.model_path / "bge-reranker-v2-m3"), max_length=512, device = "cuda")
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.processing(*args, **kwargs)
|
|
|
|
def valid(self, *args, **kwargs) -> bool:
|
|
data = args[0]
|
|
return isinstance(data, list)
|
|
|
|
# @logging_time(logger=logger)
|
|
def processing(self, question: str, settings: dict) -> str:
|
|
|
|
if settings is None:
|
|
settings = {}
|
|
|
|
usr_question = question
|
|
|
|
# # chroma_query settings
|
|
chroma_embedding_model = settings.get("chroma_embedding_model")
|
|
chroma_host = settings.get("chroma_host")
|
|
chroma_port = settings.get("chroma_port")
|
|
chroma_collection_id = settings.get("chroma_collection_id")
|
|
chroma_n_results = settings.get("chroma_n_results")
|
|
chroma_reranker_model = settings.get("chroma_reranker_model")
|
|
chroma_reranker_num = settings.get("chroma_reranker_num")
|
|
|
|
if usr_question is None:
|
|
return JSONResponse(content={"error": "question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
|
|
|
if chroma_embedding_model is None or chroma_embedding_model.isspace() or chroma_embedding_model == "":
|
|
chroma_embedding_model = str(self.model_path / "bge-large-zh-v1.5")
|
|
|
|
if chroma_host is None or chroma_host.isspace() or chroma_host == "":
|
|
chroma_host = "localhost"
|
|
|
|
if chroma_port is None or chroma_port.isspace() or chroma_port == "":
|
|
chroma_port = "7000"
|
|
|
|
if chroma_collection_id is None or chroma_collection_id.isspace() or chroma_collection_id == "":
|
|
chroma_collection_id = "g2e"
|
|
|
|
if chroma_n_results is None or chroma_n_results == "":
|
|
chroma_n_results = 10
|
|
|
|
# load client and embedding model from init
|
|
if re.search(r"localhost", chroma_host) and re.search(r"7000", chroma_port):
|
|
client = self.client_1
|
|
else:
|
|
try:
|
|
client = chromadb.HttpClient(host=chroma_host, port=chroma_port)
|
|
except:
|
|
return JSONResponse(content={"error": "chroma client not found"}, status_code=status.HTTP_400_BAD_REQUEST)
|
|
|
|
if re.search(str(self.model_path / "bge-large-zh-v1.5"), chroma_embedding_model):
|
|
embedding_model = self.embedding_model_1
|
|
elif re.search(str(self.model_path / "bge-small-en-v1.5"), chroma_embedding_model):
|
|
embedding_model = self.embedding_model_2
|
|
elif re.search(str(self.model_path / "bge-m3"), chroma_embedding_model):
|
|
embedding_model = self.embedding_model_3
|
|
else:
|
|
try:
|
|
embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name=chroma_embedding_model, device = "cuda:0")
|
|
except:
|
|
return JSONResponse(content={"error": "embedding model not found"}, status_code=status.HTTP_400_BAD_REQUEST)
|
|
|
|
# load collection
|
|
collection = client.get_collection(chroma_collection_id, embedding_function=embedding_model)
|
|
|
|
print(usr_question)
|
|
# query it
|
|
results = collection.query(
|
|
query_texts=[usr_question],
|
|
n_results=chroma_n_results,
|
|
)
|
|
|
|
# response = str(results["documents"] + results["metadatas"])
|
|
# response = str(results["documents"])
|
|
|
|
final_result = ''
|
|
|
|
# if results is not None:
|
|
# results_distances = results["distances"][0]
|
|
|
|
# #distance越高越不准确
|
|
# top_distance = 0.8
|
|
|
|
|
|
# for i in range(len(results_distances)):
|
|
# if results_distances[i] < top_distance:
|
|
# final_result += results["documents"][0][i]
|
|
|
|
# print("\n final_result: ", final_result)
|
|
|
|
final_result = str(results["documents"])
|
|
|
|
if chroma_reranker_model:
|
|
if re.search(str(self.model_path / "bge-reranker-v2-m3"), chroma_reranker_model):
|
|
reranker_model = self.reranker_model_1
|
|
else:
|
|
try:
|
|
reranker_model = CrossEncoder(chroma_reranker_model, max_length=512, device = "cuda")
|
|
except:
|
|
return JSONResponse(content={"error": "reranker model not found"}, status_code=status.HTTP_400_BAD_REQUEST)
|
|
|
|
if chroma_reranker_num:
|
|
if chroma_reranker_num > chroma_n_results:
|
|
chroma_reranker_num = chroma_n_results
|
|
else:
|
|
chroma_reranker_num = 5
|
|
|
|
#对每一对(查询、文档)进行评分
|
|
pairs = [[usr_question, doc] for doc in results["documents"][0]]
|
|
print('\n',pairs)
|
|
scores = reranker_model.predict(pairs)
|
|
|
|
#重新排列文件顺序:
|
|
print("New Ordering:")
|
|
i = 0
|
|
final_result = ''
|
|
for o in np.argsort(scores)[::-1]:
|
|
if i == chroma_reranker_num or scores[o] < 0.5:
|
|
break
|
|
i += 1
|
|
print(o+1)
|
|
print("Scores:", scores[o])
|
|
print(results["documents"][0][o],'\n')
|
|
final_result += results["documents"][0][o] + '\n'
|
|
|
|
return final_result
|
|
|
|
|
|
async def fast_api_handler(self, request: Request) -> Response:
|
|
try:
|
|
data = await request.json()
|
|
except:
|
|
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
|
|
|
|
user_question = data.get("question")
|
|
setting = data.get("settings")
|
|
|
|
return JSONResponse(
|
|
content={"response": self.processing(user_question, setting)},
|
|
status_code=status.HTTP_200_OK) |