mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
137 lines
4.9 KiB
Python
137 lines
4.9 KiB
Python
# -*- encoding: utf-8 -*-
|
|
# @Author: SWHL
|
|
# @Contact: liekkaskono@163.com
|
|
from os import PathLike
|
|
import traceback
|
|
from pathlib import Path
|
|
from typing import Any, BinaryIO, List, Union, Tuple
|
|
|
|
import librosa
|
|
import numpy as np
|
|
|
|
from .utils import (CharTokenizer, Hypothesis, ONNXRuntimeError,
|
|
OrtInferSession, TokenIDConverter, WavFrontend, get_logger,
|
|
read_yaml)
|
|
|
|
logging = get_logger()
|
|
|
|
|
|
class RapidParaformer():
|
|
def __init__(self, config: dict) -> None:
|
|
|
|
self.converter = TokenIDConverter(**config['TokenIDConverter'])
|
|
self.tokenizer = CharTokenizer(**config['CharTokenizer'])
|
|
self.frontend = WavFrontend(
|
|
cmvn_file=config['WavFrontend']['cmvn_file'],
|
|
**config['WavFrontend']['frontend_conf']
|
|
)
|
|
self.ort_infer = OrtInferSession(config['Model'])
|
|
self.batch_size = config['Model']['batch_size']
|
|
|
|
def __call__(self, wav_content: Union[str, np.ndarray, List[str]]) -> List:
|
|
waveform_list = self.load_data(wav_content)
|
|
waveform_nums = len(waveform_list)
|
|
|
|
asr_res = []
|
|
for beg_idx in range(0, waveform_nums, self.batch_size):
|
|
end_idx = min(waveform_nums, beg_idx + self.batch_size)
|
|
|
|
feats, feats_len = self.extract_feat(waveform_list[beg_idx:end_idx])
|
|
|
|
try:
|
|
am_scores, valid_token_lens = self.infer(feats, feats_len)
|
|
except ONNXRuntimeError:
|
|
logging.warning("input wav is silence or noise")
|
|
preds = []
|
|
else:
|
|
preds = self.decode(am_scores, valid_token_lens)
|
|
asr_res.extend(preds)
|
|
return asr_res
|
|
|
|
def load_data(self,
|
|
wav_content: Union[str, np.ndarray, List[str]]) -> List:
|
|
def load_wav(path: str | int | PathLike[Any] | BinaryIO ) -> np.ndarray:
|
|
waveform, sr = librosa.load(path, sr=None)
|
|
resample = librosa.resample(waveform, orig_sr=sr, target_sr=16000)
|
|
return resample[None, ...]
|
|
|
|
if isinstance(wav_content, np.ndarray):
|
|
return [wav_content]
|
|
|
|
if isinstance(wav_content, str):
|
|
return [load_wav(wav_content)]
|
|
|
|
if isinstance(wav_content, list):
|
|
return [load_wav(path) for path in wav_content]
|
|
|
|
raise TypeError(
|
|
f'The type of {wav_content} is not in [str, np.ndarray, list]')
|
|
|
|
def extract_feat(self,
|
|
waveform_list: List[np.ndarray]
|
|
) -> Tuple[np.ndarray, np.ndarray]:
|
|
feats, feats_len = [], []
|
|
for waveform in waveform_list:
|
|
speech, _ = self.frontend.fbank(waveform)
|
|
feat, feat_len = self.frontend.lfr_cmvn(speech)
|
|
feats.append(feat)
|
|
feats_len.append(feat_len)
|
|
|
|
feats = self.pad_feats(feats, np.max(feats_len))
|
|
feats_len = np.array(feats_len).astype(np.int32)
|
|
return feats, feats_len
|
|
|
|
@staticmethod
|
|
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
|
|
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
|
|
pad_width = ((0, max_feat_len - cur_len), (0, 0))
|
|
return np.pad(feat, pad_width, 'constant', constant_values=0)
|
|
|
|
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
|
|
feats = np.array(feat_res).astype(np.float32)
|
|
return feats
|
|
|
|
def infer(self, feats: np.ndarray,
|
|
feats_len: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
|
am_scores, token_nums = self.ort_infer([feats, feats_len])
|
|
return am_scores, token_nums
|
|
|
|
def decode(self, am_scores: np.ndarray, token_nums: int) -> List[str]:
|
|
return [self.decode_one(am_score, token_num)
|
|
for am_score, token_num in zip(am_scores, token_nums)]
|
|
|
|
def decode_one(self,
|
|
am_score: np.ndarray,
|
|
valid_token_num: int) -> List[str]:
|
|
yseq = am_score.argmax(axis=-1)
|
|
score = am_score.max(axis=-1)
|
|
score = np.sum(score, axis=-1)
|
|
|
|
# pad with mask tokens to ensure compatibility with sos/eos tokens
|
|
# asr_model.sos:1 asr_model.eos:2
|
|
yseq = np.array([1] + yseq.tolist() + [2])
|
|
hyp = Hypothesis(yseq=yseq, score=score)
|
|
|
|
# remove sos/eos and get results
|
|
last_pos = -1
|
|
token_int = hyp.yseq[1:last_pos].tolist()
|
|
|
|
# remove blank symbol id, which is assumed to be 0
|
|
token_int = list(filter(lambda x: x not in (0, 2), token_int))
|
|
|
|
# Change integer-ids to tokens
|
|
token = self.converter.ids2tokens(token_int)
|
|
text = self.tokenizer.tokens2text(token)
|
|
return text[:valid_token_num-1]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
project_dir = Path(__file__).resolve().parent.parent
|
|
cfg_path = project_dir / 'resources' / 'config.yaml'
|
|
paraformer = RapidParaformer(cfg_path)
|
|
|
|
wav_file = '0478_00017.wav'
|
|
for i in range(1000):
|
|
result = paraformer(wav_file)
|
|
print(result)
|