Files
jarvis-models/src/blackbox/vlms.py
2024-09-24 10:48:36 +08:00

300 lines
12 KiB
Python

from fastapi import Request, Response, status
from fastapi.responses import JSONResponse
from injector import singleton,inject
from typing import Optional, List
from .blackbox import Blackbox
from ..log.logging_time import logging_time
# from .chroma_query import ChromaQuery
from ..configuration import VLMConf
import requests
import base64
import copy
import ast
import io
from PIL import Image
from lmdeploy.serve.openai.api_client import APIClient
import io
from PIL import Image
from lmdeploy.serve.openai.api_client import APIClient
def is_base64(value) -> bool:
try:
base64.b64decode(base64.b64decode(value)) == value.encode()
return True
except Exception:
return False
@singleton
class VLMS(Blackbox):
@inject
def __init__(self, vlm_config: VLMConf):
"""
Initialization for endpoint url and generation config.
- temperature (float): to modulate the next token probability
- top_p (float): If set to float < 1, only the smallest set of most
probable tokens with probabilities that add up to top_p or higher
are kept for generation.
- max_tokens (int | None): output token nums. Default to None.
- repetition_penalty (float): The parameter for repetition penalty.
1.0 means no penalty
- stop (str | List[str] | None): To stop generating further
tokens. Only accept stop words that's encoded to one token idex.
Additional arguments supported by LMDeploy:
- top_k (int): The number of the highest probability vocabulary
tokens to keep for top-k-filtering
- ignore_eos (bool): indicator for ignoring eos
- skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be True."""
self.url = vlm_config.url
self.temperature: float = 0.7
self.top_p:float = 1
self.max_tokens: (int |None) = 512
self.repetition_penalty: float = 1
self.stop: (str | List[str] |None) = ['<|endoftext|>','<|im_end|>']
self.top_k: (int) = None
self.ignore_eos: (bool) = False
self.skip_special_tokens: (bool) = True
self.settings: dict = {
"temperature": self.temperature,
"top_p":self.top_p,
"max_tokens": self.max_tokens,
"repetition_penalty": self.repetition_penalty,
"stop": self.stop,
"top_k": self.top_k,
"ignore_eos": self.ignore_eos,
"skip_special_tokens": self.skip_special_tokens,
}
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
def valid(self, *args, **kwargs) -> bool:
data = args[0]
return isinstance(data, list)
def processing(self, prompt:str, images:str | bytes, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
"""
Args:
prompt: a string query to the model.
images: a base64 string of image data;
user_context: a list of history conversation, should be a list of openai format.
settings: a dictionary set by user with fields stated in __init__
Return:
response: a string
history: a list
"""
if settings:
for k in settings:
if k not in self.settings:
print("Warning: '{}' is not a support argument and ignore this argment, check the arguments {}".format(k,self.settings.keys()))
settings.pop(k)
tmp = copy.deepcopy(self.settings)
tmp.update(settings)
settings = tmp
else:
settings = {}
# Transform the images into base64 format where openai format need.
if images:
if is_base64(images): # image as base64 str
images_data = images
elif isinstance(images,bytes): # image as bytes
images_data = str(base64.b64encode(images),'utf-8')
else: # image as pathLike str
# with open(images, "rb") as img_file:
# images_data = str(base64.b64encode(img_file.read()), 'utf-8')
res = requests.get(images)
images_data = str(base64.b64encode(res.content),'utf-8')
else:
images_data = None
## AutoLoad Model
# url = 'http://10.6.80.87:8000/' + model_name + '/'
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
# data = requests.post(url, json=data_input)
# print(data.text)
# return data.text
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
## Lmdeploy
# if not user_context:
# user_context = []
## Predefine user_context only for testing
# user_context = [{'role':'user','content':'你好,我叫康康,你是谁?'}, {'role': 'assistant', 'content': '你好!很高兴为你提供帮助。'}]
# user_context = [{
# 'role': 'user',
# 'content': [{
# 'type': 'text',
# 'text': '图中有什么,请描述一下',
# }, {
# 'type': 'image_url',
# 'image_url': {
# 'url': 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
# },
# }]
# },{
# 'role': 'assistant',
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
# }
# ]
api_client = APIClient(self.url)
# api_client = APIClient("http://10.6.80.91:23333")
model_name = api_client.available_models[0]
# Reformat input into openai format to request.
if images_data:
messages = user_context + [{
'role': 'user',
'content': [{
'type': 'text',
'text': prompt,
},{
'type': 'image_url',
'image_url': { # Image two
'url':
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
# './val_data/image_5.jpg'
f"data:image/jpeg;base64,{images_data}",
},
# },{ # Image one
# 'type': 'image_url',
# 'image_url': {
# 'url': 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
# },
}]
}
]
else:
messages = user_context + [{
'role': 'user',
'content': [{
'type': 'text',
'text': prompt,
}]
}
]
responses = ''
total_token_usage = 0 # which can be used to count the cost of a query
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
messages=messages,#stream = True,
**settings,
# session_id=,
)):
# Stream output
# print(item["choices"][0]["delta"]['content'],end='')
# responses += item["choices"][0]["delta"]['content']
print(item["choices"][0]["message"]['content'])
responses += item["choices"][0]["message"]['content']
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
user_context = messages + [{'role': 'assistant', 'content': responses}]
return responses, user_context
def _into_openai_format(self, context:List[list]) -> List[dict]:
"""
Convert the data into openai format.
context: a list of list, each element have the form [user_input, response],
and the first one of list 'user_input' is also tuple with [,text]; [image,text] or [[imgs],text]
#TODO: add support for multiple images
"""
user_context = []
for i,item in enumerate(context):
user_content = item[0]
if isinstance(user_content, list):
if len(user_content) == 1:
user_content = [{
'type': 'text',
'text': user_content[0]
}]
elif is_base64(user_content[0]):
user_content = [{
'type': 'image_url',
'image_url': {
'url': f"data:image/jpeg;base64,{user_content[0]}"
},
},{
'type': 'text',
'text': user_content[1]
}]
else:
user_content = [{
'type': 'image_url',
'image_url': {
'url': user_content[0]
},
},{
'type': 'text',
'text': user_content[1]
}]
else:
user_content = [{
'type': 'text',
'text': user_content
}]
user_context.append({
'role': 'user',
'content': user_content
})
user_context.append({
'role': 'assistant',
'content': item[1]
})
return user_context
async def fast_api_handler(self, request: Request) -> Response:
## TODO: add support for multiple images and support image in form-data format
json_request = True
try:
content_type = request.headers['content-type']
if content_type == 'application/json':
data = await request.json()
else:
data = await request.form()
json_request = False
except Exception as e:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
model_name = data.get("model_name")
prompt = data.get("prompt")
settings: dict = data.get('settings')
context = data.get("context")
if not context:
user_context = []
elif isinstance(context[0], list):
user_context = self._into_openai_format(context)
elif isinstance(context[0], dict):
user_context = context
else:
return JSONResponse(content={"error": "context format error, should be in format of list or Openai_format"}, status_code=status.HTTP_400_BAD_REQUEST)
if json_request:
img_data = data.get("img_data")
else:
img_data = await data.get("img_data").read()
if settings: settings = ast.literal_eval(settings)
if prompt is None:
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
if model_name is None or model_name.isspace():
model_name = "Qwen-VL-Chat"
response, history = self.processing(prompt, img_data,settings, model_name,user_context=user_context)
# jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
return JSONResponse(content={"response": response}, status_code=status.HTTP_200_OK)