# jarvis-models ## Conda Environment and Python Library Requirement ```bash conda create -n jarvis-models python==3.10.11 pip install -r sample/requirement_out_of_pytorch.txt pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118 ``` ## More Dependencies | System | package | web | install command | | --- | ---- | --- | --- | | python | filetype | https://pypi.org/project/filetype/ | pip install filetype | | python | fastAPI | https://fastapi.tiangolo.com/ | pip install fastapi | | python | python-multipart | https://pypi.org/project/python-multipart/ | pip install python-multipart | | python | uvicorn | https://www.uvicorn.org/ | pip install "uvicorn[standard]" | | python | SpeechRecognition | https://pypi.org/project/SpeechRecognition/ | pip install SpeechRecognition | | python | gtts | https://pypi.org/project/gTTS/ | pip install gTTS | | python | PyYAML | https://pypi.org/project/PyYAML/ | pip install PyYAML | | python | injector | https://github.com/python-injector/injector | pip install injector | | python | langchain | https://github.com/langchain-ai/langchain | pip install langchain | | python | chromadb | https://docs.trychroma.com/getting-started | pip install chromadb | | python | lagent | https://github.com/InternLM/lagent/blob/main/README.md | pip install lagent | ## Start Start the jarvis-models service via ```bash uvicorn main:app --reload ``` or ```bash python main.py ``` ## Configuration Create ".env.yaml" at the root of jarvis-models, and copy the following yaml configuration ```yaml log: level: debug time_format: "%Y-%m-%d %H:%M:%S" filename: "D:/Workspace/Logging/jarvis/jarvis-models.log" melotts: url: http://{IP running docker melotts-api}:18080/convert/tts tesou: url: http://120.196.116.194:48891/chat/ TokenIDConverter: token_path: src/asr/resources/models/token_list.pkl unk_symbol: CharTokenizer: symbol_value: space_symbol: remove_non_linguistic_symbols: false WavFrontend: cmvn_file: src/asr/resources/models/am.mvn frontend_conf: fs: 16000 window: hamming n_mels: 80 frame_length: 25 frame_shift: 10 lfr_m: 7 lfr_n: 6 filter_length_max: -.inf dither: 0.0 Model: model_path: src/asr/resources/models/model.onnx use_cuda: false CUDAExecutionProvider: device_id: 0 arena_extend_strategy: kNextPowerOfTwo cudnn_conv_algo_search: EXHAUSTIVE do_copy_in_default_stream: true batch_size: 3 ```