# -*- encoding: utf-8 -*- # @Author: SWHL # @Contact: liekkaskono@163.com import functools import logging import pickle from pathlib import Path from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union import warnings import numpy as np import yaml from onnxruntime import (GraphOptimizationLevel, InferenceSession, SessionOptions, get_available_providers, get_device) from typeguard import check_argument_types from .kaldifeat import compute_fbank_feats root_dir = Path(__file__).resolve().parent logger_initialized = {} class TokenIDConverter(): def __init__(self, token_path: Union[Path, str], unk_symbol: str = "",): check_argument_types() self.token_list = self.load_token(token_path) self.unk_symbol = unk_symbol @staticmethod def load_token(file_path: Union[Path, str]) -> List: if not Path(file_path).exists(): raise TokenIDConverterError(f'The {file_path} does not exist.') with open(str(file_path), 'rb') as f: token_list = pickle.load(f) if len(token_list) != len(set(token_list)): raise TokenIDConverterError('The Token exists duplicated symbol.') return token_list def get_num_vocabulary_size(self) -> int: return len(self.token_list) def ids2tokens(self, integers: Union[np.ndarray, Iterable[int]]) -> List[str]: if isinstance(integers, np.ndarray) and integers.ndim != 1: raise TokenIDConverterError( f"Must be 1 dim ndarray, but got {integers.ndim}") return [self.token_list[i] for i in integers] def tokens2ids(self, tokens: Iterable[str]) -> List[int]: token2id = {v: i for i, v in enumerate(self.token_list)} if self.unk_symbol not in token2id: raise TokenIDConverterError( f"Unknown symbol '{self.unk_symbol}' doesn't exist in the token_list" ) unk_id = token2id[self.unk_symbol] return [token2id.get(i, unk_id) for i in tokens] class CharTokenizer(): def __init__( self, symbol_value: Union[Path, str, Iterable[str]] = None, space_symbol: str = "", remove_non_linguistic_symbols: bool = False, ): check_argument_types() self.space_symbol = space_symbol self.non_linguistic_symbols = self.load_symbols(symbol_value) self.remove_non_linguistic_symbols = remove_non_linguistic_symbols @staticmethod def load_symbols(value: Union[Path, str, Iterable[str]] = None) -> Set: if value is None: return set() if isinstance(value, Iterable[str]): return set(value) file_path = Path(value) if not file_path.exists(): logging.warning("%s doesn't exist.", file_path) return set() with file_path.open("r", encoding="utf-8") as f: return set(line.rstrip() for line in f) def text2tokens(self, line: Union[str, list]) -> List[str]: tokens = [] while len(line) != 0: for w in self.non_linguistic_symbols: if line.startswith(w): if not self.remove_non_linguistic_symbols: tokens.append(line[: len(w)]) line = line[len(w):] break else: t = line[0] if t == " ": t = "" tokens.append(t) line = line[1:] return tokens def tokens2text(self, tokens: Iterable[str]) -> str: tokens = [t if t != self.space_symbol else " " for t in tokens] return "".join(tokens) def __repr__(self): return ( f"{self.__class__.__name__}(" f'space_symbol="{self.space_symbol}"' f'non_linguistic_symbols="{self.non_linguistic_symbols}"' f")" ) class WavFrontend(): """Conventional frontend structure for ASR. """ def __init__( self, cmvn_file: str = None, fs: int = 16000, window: str = 'hamming', n_mels: int = 80, frame_length: int = 25, frame_shift: int = 10, filter_length_min: int = -1, filter_length_max: float = -1, lfr_m: int = 1, lfr_n: int = 1, dither: float = 1.0 ) -> None: check_argument_types() self.fs = fs self.window = window self.n_mels = n_mels self.frame_length = frame_length self.frame_shift = frame_shift self.filter_length_min = filter_length_min self.filter_length_max = filter_length_max self.lfr_m = lfr_m self.lfr_n = lfr_n self.cmvn_file = cmvn_file self.dither = dither if self.cmvn_file: self.cmvn = self.load_cmvn() def fbank(self, input_content: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: waveform_len = input_content.shape[1] waveform = input_content[0][:waveform_len] waveform = waveform * (1 << 15) mat = compute_fbank_feats(waveform, num_mel_bins=self.n_mels, frame_length=self.frame_length, frame_shift=self.frame_shift, dither=self.dither, energy_floor=0.0, window_type=self.window, sample_frequency=self.fs) feat = mat.astype(np.float32) feat_len = np.array(mat.shape[0]).astype(np.int32) return feat, feat_len def lfr_cmvn(self, feat: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: if self.lfr_m != 1 or self.lfr_n != 1: feat = self.apply_lfr(feat, self.lfr_m, self.lfr_n) if self.cmvn_file: feat = self.apply_cmvn(feat) feat_len = np.array(feat.shape[0]).astype(np.int32) return feat, feat_len @staticmethod def apply_lfr(inputs: np.ndarray, lfr_m: int, lfr_n: int) -> np.ndarray: LFR_inputs = [] T = inputs.shape[0] T_lfr = int(np.ceil(T / lfr_n)) left_padding = np.tile(inputs[0], ((lfr_m - 1) // 2, 1)) inputs = np.vstack((left_padding, inputs)) T = T + (lfr_m - 1) // 2 for i in range(T_lfr): if lfr_m <= T - i * lfr_n: LFR_inputs.append( (inputs[i * lfr_n:i * lfr_n + lfr_m]).reshape(1, -1)) else: # process last LFR frame num_padding = lfr_m - (T - i * lfr_n) frame = inputs[i * lfr_n:].reshape(-1) for _ in range(num_padding): frame = np.hstack((frame, inputs[-1])) LFR_inputs.append(frame) LFR_outputs = np.vstack(LFR_inputs).astype(np.float32) return LFR_outputs def apply_cmvn(self, inputs: np.ndarray) -> np.ndarray: """ Apply CMVN with mvn data """ frame, dim = inputs.shape means = np.tile(self.cmvn[0:1, :dim], (frame, 1)) vars = np.tile(self.cmvn[1:2, :dim], (frame, 1)) inputs = (inputs + means) * vars return inputs def load_cmvn(self,) -> np.ndarray: with open(self.cmvn_file, 'r', encoding='utf-8') as f: lines = f.readlines() means_list = [] vars_list = [] for i in range(len(lines)): line_item = lines[i].split() if line_item[0] == '': line_item = lines[i + 1].split() if line_item[0] == '': add_shift_line = line_item[3:(len(line_item) - 1)] means_list = list(add_shift_line) continue elif line_item[0] == '': line_item = lines[i + 1].split() if line_item[0] == '': rescale_line = line_item[3:(len(line_item) - 1)] vars_list = list(rescale_line) continue means = np.array(means_list).astype(np.float64) vars = np.array(vars_list).astype(np.float64) cmvn = np.array([means, vars]) return cmvn class Hypothesis(NamedTuple): """Hypothesis data type.""" yseq: np.ndarray score: Union[float, np.ndarray] = 0 scores: Dict[str, Union[float, np.ndarray]] = dict() states: Dict[str, Any] = dict() def asdict(self) -> dict: """Convert data to JSON-friendly dict.""" return self._replace( yseq=self.yseq.tolist(), score=float(self.score), scores={k: float(v) for k, v in self.scores.items()}, )._asdict() class TokenIDConverterError(Exception): pass class ONNXRuntimeError(Exception): pass class OrtInferSession(): def __init__(self, config): sess_opt = SessionOptions() sess_opt.log_severity_level = 4 sess_opt.enable_cpu_mem_arena = False sess_opt.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_ALL cuda_ep = 'CUDAExecutionProvider' cpu_ep = 'CPUExecutionProvider' cpu_provider_options = { "arena_extend_strategy": "kSameAsRequested", } EP_list = [] if config['use_cuda'] and get_device() == 'GPU' \ and cuda_ep in get_available_providers(): EP_list = [(cuda_ep, config[cuda_ep])] EP_list.append((cpu_ep, cpu_provider_options)) config['model_path'] = config['model_path'] self._verify_model(config['model_path']) self.session = InferenceSession(config['model_path'], sess_options=sess_opt, providers=EP_list) if config['use_cuda'] and cuda_ep not in self.session.get_providers(): warnings.warn(f'{cuda_ep} is not avaiable for current env, the inference part is automatically shifted to be executed under {cpu_ep}.\n' 'Please ensure the installed onnxruntime-gpu version matches your cuda and cudnn version, ' 'you can check their relations from the offical web site: ' 'https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html', RuntimeWarning) def __call__(self, input_content: List[Union[np.ndarray, np.ndarray]]) -> np.ndarray: input_dict = dict(zip(self.get_input_names(), input_content)) try: return self.session.run(None, input_dict) except Exception as e: raise ONNXRuntimeError('ONNXRuntime inferece failed.') from e def get_input_names(self, ): return [v.name for v in self.session.get_inputs()] def get_output_names(self,): return [v.name for v in self.session.get_outputs()] def get_character_list(self, key: str = 'character'): return self.meta_dict[key].splitlines() def have_key(self, key: str = 'character') -> bool: self.meta_dict = self.session.get_modelmeta().custom_metadata_map if key in self.meta_dict.keys(): return True return False @staticmethod def _verify_model(model_path): model_path = Path(model_path) if not model_path.exists(): raise FileNotFoundError(f'{model_path} does not exists.') if not model_path.is_file(): raise FileExistsError(f'{model_path} is not a file.') def read_yaml(yaml_path: Union[str, Path]) -> Dict: if not Path(yaml_path).exists(): raise FileExistsError(f'The {yaml_path} does not exist.') with open(str(yaml_path), 'rb') as f: data = yaml.load(f, Loader=yaml.Loader) return data @functools.lru_cache() def get_logger(name='rapdi_paraformer'): """Initialize and get a logger by name. If the logger has not been initialized, this method will initialize the logger by adding one or two handlers, otherwise the initialized logger will be directly returned. During initialization, a StreamHandler will always be added. Args: name (str): Logger name. Returns: logging.Logger: The expected logger. """ logger = logging.getLogger(name) if name in logger_initialized: return logger for logger_name in logger_initialized: if name.startswith(logger_name): return logger formatter = logging.Formatter( '[%(asctime)s] %(name)s %(levelname)s: %(message)s', datefmt="%Y/%m/%d %H:%M:%S") sh = logging.StreamHandler() sh.setFormatter(formatter) logger.addHandler(sh) logger_initialized[name] = True logger.propagate = False return logger