# KaldiFeat KaldiFeat is a light-weight Python library for computing Kaldi-style acoustic features based on NumPy. It might be helpful if you want to: - Test a pre-trained model on new data without writing shell commands and creating a bunch of files. - Run a pre-trained model in a new environment without installing Kaldi. ## Example The following codes calculate MFCCs with the same settings in `kaldi/egs/voxceleb/v2` ``` import librosa from kaldifeat import compute_mfcc_feats, compute_vad, apply_cmvn_sliding # Assume we have a wav file called example.wav whose sample rate is 16000 Hz data, _ = librosa.load('example.wav', 16000) # We adopt 16 bits data, thus we need to transform dtype from float to int16 for librosa data = (data * 32768).astype(np.int16) raw_mfcc = compute_mfcc_feats(data, sample_frequency=16000, frame_length=25, frame_shift=10, low_freq=20, high_freq=-400, num_mel_bins=30, num_ceps=30, snip_edges=False) log_energy = raw_mfcc[:, 0] vad = compute_vad(log_energy, energy_threshold=5.5, energy_mean_scale=0.5, frames_context=2, proportion_threshold=0.12) mfcc = apply_cmvn_sliding(raw_mfcc, window=300, center=True)[vad] ``` ## Supported Functions ### compute_fbank_feats Compute (log) Mel filter bank energies (FBanks) in the same way as `kaldi/src/featbin/compute_fbank_feats` | Parameters | Description | | :--------- | :---------- | |blackman_coeff| Constant coefficient for generalized Blackman window. (float, default = 0.42)| |dither| Dithering constant (0.0 means no dither). If you turn this off, you should set the --energy-floor option, e.g. to 1.0 or 0.1 (float, default = 1)| |energy_floor| Floor on energy (absolute, not relative) in FBANK computation. Only makes a difference if --use-energy=true; only necessary if --dither=0.0. Suggested values: 0.1 or 1.0 (float, default = 0)| |frame_length| Frame length in milliseconds (float, default = 25)| |frame_shift| Frame shift in milliseconds (float, default = 10)| |high_freq| High cutoff frequency for mel bins (if <= 0, offset from Nyquist) (float, default = 0)| |low_freq| Low cutoff frequency for mel bins (float, default = 20)| |num_mel_bins| Number of triangular mel-frequency bins (int, default = 23)| |preemphasis_coefficient| Coefficient for use in signal preemphasis (float, default = 0.97)| |raw_energy| If true, compute energy before preemphasis and windowing (bool, default = true)| |remove_dc_offset| Subtract mean from waveform on each frame (bool, default = true)| |round_to_power_of_two| If true, round window size to power of two by zero-padding input to FFT. (bool, default = true)| |sample_frequency| Waveform data sample frequency (must match the waveform file, if specified there) (float, default = 16000)| |snip_edges| If true, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame-length. If false, the number of frames depends only on the frame-shift, and we reflect the data at the ends. (bool, default = true)| |use_energy| Add an extra energy output. (bool, default = false)| |use_log_fbank| If true, produce log-filterbank, else produce linear. (bool, default = true)| |use_power| If true, use power, else use magnitude. (bool, default = true)| |window_type| Type of window ("hamming"\|"hanning"\|"povey"\|"rectangular"\|"sine"\|"blackmann") (string, default = "povey")| |dtype| Type of array (np.float32\|np.float64) (dtype or string, default=np.float32)| ### compute_mfcc_feats Compute Mel-frequency cepstral coefficients (MFCCs) in the same way as `kaldi/src/featbin/compute_mfcc_feats` | Parameters | Description | | :--------- | :---------- | |blackman_coeff| Constant coefficient for generalized Blackman window. (float, default = 0.42)| |cepstral_lifter| Constant that controls scaling of MFCCs (float, default = 22)| |dither| Dithering constant (0.0 means no dither). If you turn this off, you should set the --energy-floor option, e.g. to 1.0 or 0.1 (float, default = 1)| |energy_floor| Floor on energy (absolute, not relative) in MFCC computation. Only makes a difference if --use-energy=true; only necessary if --dither=0.0. Suggested values: 0.1 or 1.0 (float, default = 0)| |frame_length| Frame length in milliseconds (float, default = 25)| |frame_shift| Frame shift in milliseconds (float, default = 10)| |high_freq| High cutoff frequency for mel bins (if <= 0, offset from Nyquist) (float, default = 0)| |low_freq| Low cutoff frequency for mel bins (float, default = 20)| |num_ceps| Number of cepstra in MFCC computation (including C0) (int, default = 13)| |num_mel_bins| Number of triangular mel-frequency bins (int, default = 23)| |preemphasis_coefficient| Coefficient for use in signal preemphasis (float, default = 0.97)| |raw_energy| If true, compute energy before preemphasis and windowing (bool, default = true)| |remove_dc_offset| Subtract mean from waveform on each frame (bool, default = true)| |round_to_power_of_two| If true, round window size to power of two by zero-padding input to FFT. (bool, default = true)| |sample_frequency| Waveform data sample frequency (must match the waveform file, if specified there) (float, default = 16000)| |snip_edges| If true, end effects will be handled by outputting only frames that completely fit in the file, and the number of frames depends on the frame-length. If false, the number of frames depends only on the frame-shift, and we reflect the data at the ends. (bool, default = true)| |use_energy| Use energy (not C0) in MFCC computation (bool, default = true)| |window_type| Type of window ("hamming"\|"hanning"\|"povey"\|"rectangular"\|"sine"\|"blackmann") (string, default = "povey")| |dtype| Type of array (np.float32\|np.float64) (dtype or string, default=np.float32)| ### apply_cmvn_sliding Apply sliding-window cepstral mean (and optionally variance) normalization in the same way as `kaldi/src/featbin/apply_cmvn_sliding` | Parameters | Description | | :--------- | :---------- | |center| If true, use a window centered on the current frame (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false)| |window| Window in frames for running average CMN computation (int, default = 600)| |min_window| Minimum CMN window used at start of decoding (adds latency only at start). Only applicable if center == false, ignored if center==true (int, default = 100)| |norm_vars| If true, normalize variance to one. (bool, default = false)| ### compute_vad Apply energy-based voice activity detection in the same way as `kaldi/src/ivectorbin/compute_vad` | Parameters | Description | | :--------- | :---------- | |energy_mean_scale| If this is set to s, to get the actual threshold we let m be the mean log-energy of the file, and use s\*m + vad-energy-threshold (float, default = 0.5)| |energy_threshold| Constant term in energy threshold for VAD (also see energy_mean_scale) (float, default = 5)| |frames_context| Number of frames of context on each side of central frame, in window for which energy is monitored (int, default = 0)| |proportion_threshold| Parameter controlling the proportion of frames within the window that need to have more energy than the threshold (float, default = 0.6)| ### Related Projects - [python_speech_features](https://github.com/jameslyons/python_speech_features) - [python_kaldi_features](https://github.com/ZitengWang/python_kaldi_features)