Merge branch 'main' of github.com:BoardWare-Genius/javis-models into main

This commit is contained in:
ACBBZ
2024-04-29 03:01:48 +00:00
8 changed files with 188 additions and 84 deletions

View File

@ -0,0 +1,82 @@
aiohttp==3.8.4
aiosignal==1.3.1
anyio==3.6.2
appdirs==1.4.4
async-timeout==4.0.2
async-tio==1.3.2
attrs==23.1.0
audioread==3.0.0
certifi==2022.12.7
cffi==1.15.1
charset-normalizer==2.1.1
cn2an==0.5.19
colorama==0.4.6
coloredlogs==15.0.1
Cython==0.29.34
decorator==5.1.1
filelock==3.9.0
flatbuffers==23.3.3
frozenlist==1.3.3
fsspec==2023.4.0
h11==0.14.0
httpcore==0.17.0
httpx==0.24.0
huggingface-hub==0.14.1
humanfriendly==10.0
idna==3.4
jieba==0.42.1
Jinja2==3.1.2
joblib==1.2.0
lazy_loader==0.2
librosa==0.10.0.post2
llvmlite==0.40.0
MarkupSafe==2.1.2
mpmath==1.2.1
msgpack==1.0.5
multidict==6.0.4
networkx==3.0
numba==0.57.0
numpy==1.24.1
onnxruntime==1.14.1
openai==0.27.6
OpenAIAuth==0.3.6
packaging==23.1
Pillow==9.3.0
pooch==1.6.0
proces==0.1.4
prompt-toolkit==3.0.38
protobuf==4.22.4
PyAudio==0.2.13
pycparser==2.21
pypinyin==0.48.0
pyreadline3==3.4.1
PySocks==1.7.1
pywin32==306
PyYAML==6.0
regex==2023.5.5
requests==2.28.1
revChatGPT==5.0.0
scikit-learn==1.2.2
scipy==1.10.1
sniffio==1.3.0
socksio==1.0.0
soundfile==0.12.1
soxr==0.3.5
sympy==1.11.1
threadpoolctl==3.1.0
tiktoken==0.3.3
tokenizers==0.13.3
tqdm==4.65.0
transformers==4.28.1
typeguard==2.13.3
typing_extensions==4.4.0
urllib3==1.26.13
wcwidth==0.2.6
WMI==1.5.1
yarl==1.9.2
filetype
fastapi
python-multipart
uvicorn[standard]
SpeechRecognition
gtts

View File

@ -1,15 +1,14 @@
from .audio_chat import AudioChat
from .sum import SUM
from .sentiment import Sentiment
from .tts import TTS
from .asr import ASR
from .audio_to_text import AudioToText
from .blackbox import Blackbox
from .calculator import Calculator
from .text_to_audio import TextToAudio
from .tesou import Tesou
from .fastchat import Fastchat
from .g2e import G2E
from .text_and_image import TextAndImage
class BlackboxFactory:
@ -17,14 +16,13 @@ class BlackboxFactory:
self.tts = TTS()
self.asr = ASR(".env.yaml")
self.sentiment = Sentiment()
self.sum = SUM()
self.calculator = Calculator()
self.audio_to_text = AudioToText()
self.text_to_audio = TextToAudio()
self.tesou = Tesou()
self.fastchat = Fastchat()
self.audio_chat = AudioChat(self.asr, self.tesou, self.tts)
self.g2e = G2E()
self.text_and_image = TextAndImage()
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
@ -34,16 +32,12 @@ class BlackboxFactory:
return self.audio_to_text
if blackbox_name == "text_to_audio":
return self.text_to_audio
if blackbox_name == "calculator":
return self.calculator
if blackbox_name == "asr":
return self.asr
if blackbox_name == "tts":
return self.tts
if blackbox_name == "sentiment_engine":
return self.sentiment
if blackbox_name == "sum":
return self.sum
if blackbox_name == "tesou":
return self.tesou
if blackbox_name == "fastchat":
@ -52,4 +46,6 @@ class BlackboxFactory:
return self.audio_chat
if blackbox_name == "g2e":
return self.g2e
if blackbox_name == 'text_and_image':
return self.text_and_image
raise ValueError("Invalid blockbox type")

View File

@ -0,0 +1,48 @@
from typing import Any, Coroutine
from fastapi import Request, Response, status
from fastapi.responses import JSONResponse
from .blackbox import Blackbox
from lagent.llms.lmdepoly_wrapper import LMDeployClient
from lagent.llms.meta_template import INTERNLM2_META as META
class Sentiment(Blackbox):
def __init__(self, model_name, model_url) -> None:
self.model = LMDeployClient(
model_name=model_name,
url=model_url,
meta_template=META,
top_p=0.8,
top_k=100,
temperature=0,
repetition_penalty=1.0,
stop_words=['<|im_end|>'])
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
def valid(self, *args, **kwargs) -> bool:
data = args[0]
return isinstance(data, str)
def processing(self, *args, **kwargs) -> int:
text = args[0]
text = "Please use one word to infer the emotion of the following passage:\n" + text + "\nJust print out that signle word pls."
text = [{'role': 'user', 'content': text}]
return self.model.stream_chat(text)
async def fast_api_handler(self, request) -> Response:
try:
data = await request.json()
except:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
text = data.get("text")
if text is None:
return JSONResponse(content={"error": "text is required"}, status_code=status.HTTP_400_BAD_REQUEST)
text = "Please use one word to infer the emotion of the following passage:\n" + text + "\nJust print out that signle word pls."
text = [{'role': 'user', 'content': text}]
sentiment = self.processing(text)
return JSONResponse(content={"sentiment": sentiment }, status_code=status.HTTP_200_OK)

View File

@ -1,42 +0,0 @@
from fastapi import status
from fastapi.responses import JSONResponse
from .blackbox import Blackbox
class Calculator(Blackbox):
"""This class just for example, it show how to implement Blackbox interface."""
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
def valid(self, *args, **kwargs) -> bool:
data = args[0]
return isinstance(data, dict) and "op" in data and "left" in data and "right" in data
def processing(self, data: dict) -> int | float:
if not self.valid(data):
raise ValueError("Invalid data")
a = data["left"]
b = data["right"]
op = data["op"]
if op == "add":
return a + b
if op == "sub":
return a - b
if op == "mul":
return a * b
if op == "div":
return a / b
raise ValueError("Invalid operation")
async def fast_api_handler(self, request) -> any:
try:
data = await request.json()
except:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
try:
result = self.processing(data)
except ValueError as e:
return JSONResponse(content={"error": str(e)}, status_code=status.HTTP_400_BAD_REQUEST)
return JSONResponse(content={"result": result}, status_code=status.HTTP_200_OK)

View File

@ -22,7 +22,7 @@ class G2E(Blackbox):
if context == None:
context = []
url = 'http://120.196.116.194:48890/v1'
#url = 'http://120.196.116.194:48892/v1'
background_prompt = '''KOMBUKIKI是一款茶饮料目标受众 年龄20-35岁 性别:女性 地点:一线城市、二线城市 职业:精英中产、都市白领 收入水平:中高收入,有一定消费能力 兴趣和爱好:注重健康,有运动习惯
@ -31,7 +31,7 @@ class G2E(Blackbox):
性别:女
姓名:琪琪
性格特质: 勇敢、独立、坚韧、积极、正面、自爱。 具有探险精神,拥有一颗开放的心,在面对困难和挑战时能够保持积极的态度 MBTI类型ENFP
背景故事: KIKI对旅行和冒险充满热情和渴望,正在寻找生活中的新体验和挑战,从而踏上追寻自我成长的旅程
背景故事: 琪琪对旅行和冒险充满热情和渴望,正在寻找生活中的新体验和挑战,从而踏上追寻自我成长的旅程
品牌故事 KOMBUKIKI每一口旅行的开始在忙碌的日常中KOMBUKIKI康普茶不仅是一种饮料它是一个承载梦想和自由的容器。对于那些渴望旅行寻求生活质感的20至35岁女性来说KOMBUKIKI是她们心灵的伙伴。KOMBUKIKI的每一瓶都是一段故事的开端。我们的康普茶瓶身设计灵感来自旅行手账最大的特色是其邮票形状的包装贴纸。每个贴纸上描绘着不同的旅游景点从繁华的都市到静谧的乡村每一瓶都是对该地点的独特致敬。当顾客扫描瓶身上的二维码将展开一系列充满诗意的故事带领她们走进一个个迷人的旅行梦境。在KOMBUKIKI的世界里每一口康普茶不仅是滋味的享受更是心灵的旅行。它不仅卖给顾客一种饮料更是卖给她们一种情绪价值一种对自由和旅行的渴望。这是一个专为那些处于人生转变期对成长话题感兴趣的年轻女性所设计的品牌。KOMBUKIKI不仅是康普茶它是每个人心中对旅行渴望的象征是一场心灵和味觉的双重旅行。口号 每一口,启程至心中的远方 是每个人心中对旅行渴望的象征, 是一场心灵和味觉的双重旅行。
@ -49,6 +49,9 @@ class G2E(Blackbox):
prompt_template = [
{"role": "system", "content": background_prompt + prompt1},
]
#prompt_template = [
# {"role": "system", "content": ''},
#]
messages = prompt_template + context + [
@ -57,13 +60,12 @@ class G2E(Blackbox):
"content": prompt + inject_prompt
}
]
client = OpenAI(
api_key='YOUR_API_KEY',
base_url=url
)
model_name = client.models.list().data[0].id
print(model_name)
response = client.chat.completions.create(
model=model_name,
messages=messages,

View File

@ -1,27 +0,0 @@
from typing import Any, Coroutine
from fastapi import Request, Response, status
from fastapi.responses import JSONResponse
from .blackbox import Blackbox
class SUM(Blackbox):
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
def valid(self, *args, **kwargs) -> bool:
data = args[0]
return isinstance(data, list)
def processing(self, *args, **kwargs):
return sum(args)
async def fast_api_handler(self, request: Request) -> Response:
try:
data = await request.json()
except:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
if not self.valid(data):
return JSONResponse(content={"error": "format error"}, status_code=status.HTTP_400_BAD_REQUEST)
return JSONResponse(content={"result": self.processing(data)}, status_code=status.HTTP_200_OK)

View File

@ -0,0 +1,28 @@
from typing import Any, Coroutine
from fastapi import Request, Response, status
from fastapi.responses import JSONResponse
from .blackbox import Blackbox
class TextAndImage(Blackbox):
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
def processing(self, text: str, image: bytes):
# TODO: implement the processing logic
return "text and image processing..."
def valid(self, *args, **kwargs) -> bool:
return True
async def fast_api_handler(self, request: Request) -> Response:
# If the request is a form data, you can use the following code
data = (await request.form()).get("image")
if data is None:
return JSONResponse(content={"error": "image is required"}, status_code=status.HTTP_400_BAD_REQUEST)
imageBytes = await data.read()
text = (await request.form()).get("text")
result = self.processing(text, imageBytes)
return JSONResponse(content={"result": result }, status_code=status.HTTP_200_OK)

View File

@ -54,10 +54,19 @@ components:
audio:
type: string
format: binary
TextAndImageInput:
type: object
properties:
text:
type: string
image:
type: string
format: binary
Input:
oneOf:
- $ref: "#/components/schemas/TextToAudioInput"
- $ref: "#/components/schemas/AudioToTextInput"
- $ref: "#/components/schemas/TextAndImageInput"
TextResult:
type: object
properties:
@ -71,5 +80,13 @@ components:
type: string
description: "Blackbox name"
enum:
- "text_to_audio"
- "audio_to_text"
- text_to_audio
- audio_to_text
- asr
- tts
- sentiment_engine
- tesou
- fastchat
- audio_chat
- g2e
- text_and_image