mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
update chat
This commit is contained in:
@ -1,10 +1,8 @@
|
|||||||
from . import melotts
|
|
||||||
from .audio_chat import AudioChat
|
from .audio_chat import AudioChat
|
||||||
from .sentiment import Sentiment
|
from .sentiment import Sentiment
|
||||||
from .tts import TTS
|
from .tts import TTS
|
||||||
from .asr import ASR
|
from .asr import ASR
|
||||||
from .audio_to_text import AudioToText
|
from .audio_to_text import AudioToText
|
||||||
#from .emotion import Emotion
|
|
||||||
from .blackbox import Blackbox
|
from .blackbox import Blackbox
|
||||||
# from .text_to_audio import TextToAudio
|
# from .text_to_audio import TextToAudio
|
||||||
# from .tesou import Tesou
|
# from .tesou import Tesou
|
||||||
@ -25,12 +23,10 @@ class BlackboxFactory:
|
|||||||
@inject
|
@inject
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
audio_to_text: AudioToText,
|
audio_to_text: AudioToText,
|
||||||
text_to_audio: TextToAudio,
|
|
||||||
asr: ASR,
|
asr: ASR,
|
||||||
tts: TTS,
|
tts: TTS,
|
||||||
sentiment_engine: Sentiment,
|
sentiment_engine: Sentiment,
|
||||||
#emotion: Emotion,
|
#emotion: Emotion,
|
||||||
tesou: Tesou,
|
|
||||||
fastchat: Fastchat,
|
fastchat: Fastchat,
|
||||||
audio_chat: AudioChat,
|
audio_chat: AudioChat,
|
||||||
g2e: G2E,
|
g2e: G2E,
|
||||||
@ -39,23 +35,22 @@ class BlackboxFactory:
|
|||||||
#chroma_upsert: ChromaUpsert,
|
#chroma_upsert: ChromaUpsert,
|
||||||
#chroma_chat: ChromaChat,
|
#chroma_chat: ChromaChat,
|
||||||
melotts: MeloTTS,
|
melotts: MeloTTS,
|
||||||
vlms: VLMS) -> None:
|
vlms: VLMS,
|
||||||
|
chroma_query: ChromaQuery,
|
||||||
|
chroma_upsert: ChromaUpsert,
|
||||||
|
chroma_chat: ChromaChat) -> None:
|
||||||
self.models["audio_to_text"] = audio_to_text
|
self.models["audio_to_text"] = audio_to_text
|
||||||
self.models["text_to_audio"] = text_to_audio
|
|
||||||
self.models["asr"] = asr
|
self.models["asr"] = asr
|
||||||
self.models["tts"] = tts
|
self.models["tts"] = tts
|
||||||
self.models["sentiment_engine"] = sentiment_engine
|
self.models["sentiment_engine"] = sentiment_engine
|
||||||
self.models["tesou"] = tesou
|
|
||||||
#self.models["emotion"] = emotion
|
#self.models["emotion"] = emotion
|
||||||
self.models["fastchat"] = fastchat
|
self.models["fastchat"] = fastchat
|
||||||
self.models["audio_chat"] = audio_chat
|
self.models["audio_chat"] = audio_chat
|
||||||
self.models["g2e"] = g2e
|
self.models["g2e"] = g2e
|
||||||
self.models["text_and_image"] = text_and_image
|
self.models["text_and_image"] = text_and_image
|
||||||
#self.models["chroma_query"] = chroma_query
|
self.models["chroma_query"] = chroma_query
|
||||||
#self.models["chroma_upsert"] = chroma_upsert
|
self.models["chroma_upsert"] = chroma_upsert
|
||||||
#self.models["chroma_chat"] = chroma_chat
|
self.models["chroma_chat"] = chroma_chat
|
||||||
self.models["melotts"] = melotts
|
|
||||||
self.models["vlms"] = vlms
|
|
||||||
|
|
||||||
def __call__(self, *args, **kwargs):
|
def __call__(self, *args, **kwargs):
|
||||||
return self.processing(*args, **kwargs)
|
return self.processing(*args, **kwargs)
|
||||||
|
|||||||
@ -21,7 +21,7 @@ class Chat(Blackbox):
|
|||||||
return isinstance(data, list)
|
return isinstance(data, list)
|
||||||
|
|
||||||
# model_name有 Qwen1.5-14B-Chat , internlm2-chat-20b
|
# model_name有 Qwen1.5-14B-Chat , internlm2-chat-20b
|
||||||
def processing(self, model_name, prompt, template, context: list, temperature, top_p, n, max_tokens) -> str:
|
def processing(self, model_name, prompt, template, context: list, temperature, top_p, n, max_tokens,stop,frequency_penalty,presence_penalty) -> str:
|
||||||
if context == None:
|
if context == None:
|
||||||
context = []
|
context = []
|
||||||
|
|
||||||
@ -49,7 +49,9 @@ class Chat(Blackbox):
|
|||||||
"top_p": top_p,
|
"top_p": top_p,
|
||||||
"n": n,
|
"n": n,
|
||||||
"max_tokens": max_tokens,
|
"max_tokens": max_tokens,
|
||||||
"stream": False,
|
"frequency_penalty": frequency_penalty,
|
||||||
|
"presence_penalty": presence_penalty,
|
||||||
|
"stop": stop
|
||||||
}
|
}
|
||||||
|
|
||||||
header = {
|
header = {
|
||||||
@ -75,7 +77,9 @@ class Chat(Blackbox):
|
|||||||
user_top_p = data.get("top_p")
|
user_top_p = data.get("top_p")
|
||||||
user_n = data.get("n")
|
user_n = data.get("n")
|
||||||
user_max_tokens = data.get("max_tokens")
|
user_max_tokens = data.get("max_tokens")
|
||||||
|
user_stop = data.get("stop")
|
||||||
|
user_frequency_penalty = data.get("frequency_penalty")
|
||||||
|
user_presence_penalty = data.get("presence_penalty")
|
||||||
|
|
||||||
if user_question is None:
|
if user_question is None:
|
||||||
return JSONResponse(content={"error": "question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
return JSONResponse(content={"error": "question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||||
@ -87,10 +91,10 @@ class Chat(Blackbox):
|
|||||||
user_template = ""
|
user_template = ""
|
||||||
|
|
||||||
if user_temperature is None or user_temperature == "":
|
if user_temperature is None or user_temperature == "":
|
||||||
user_temperature = 0.7
|
user_temperature = 0.8
|
||||||
|
|
||||||
if user_top_p is None or user_top_p == "":
|
if user_top_p is None or user_top_p == "":
|
||||||
user_top_p = 1
|
user_top_p = 0.8
|
||||||
|
|
||||||
if user_n is None or user_n == "":
|
if user_n is None or user_n == "":
|
||||||
user_n = 1
|
user_n = 1
|
||||||
@ -98,6 +102,15 @@ class Chat(Blackbox):
|
|||||||
if user_max_tokens is None or user_max_tokens == "":
|
if user_max_tokens is None or user_max_tokens == "":
|
||||||
user_max_tokens = 1024
|
user_max_tokens = 1024
|
||||||
|
|
||||||
|
if user_stop is None or user_stop == "":
|
||||||
|
user_stop = 100
|
||||||
|
|
||||||
|
if user_frequency_penalty is None or user_frequency_penalty == "":
|
||||||
|
user_frequency_penalty = 0.5
|
||||||
|
|
||||||
|
if user_presence_penalty is None or user_presence_penalty == "":
|
||||||
|
user_presence_penalty = 0.8
|
||||||
|
|
||||||
|
|
||||||
return JSONResponse(content={"response": self.processing(user_model_name, user_question, user_template, user_context,
|
return JSONResponse(content={"response": self.processing(user_model_name, user_question, user_template, user_context,
|
||||||
user_temperature, user_top_p, user_n, user_max_tokens)}, status_code=status.HTTP_200_OK)
|
user_temperature, user_top_p, user_n, user_max_tokens,user_stop,user_frequency_penalty,user_presence_penalty)}, status_code=status.HTTP_200_OK)
|
||||||
Reference in New Issue
Block a user