feat: blackbox chat_llama updated

This commit is contained in:
0Xiao0
2024-06-02 01:11:21 +08:00
parent b3f8de2393
commit a96e845807
4 changed files with 6567 additions and 9 deletions

6291
sample/RAG_KG.txt Normal file

File diff suppressed because one or more lines are too long

View File

@ -67,11 +67,6 @@ def fastchat_loader():
from .fastchat import Fastchat
return Injector().get(Fastchat)
@model_loader(lazy=blackboxConf.lazyloading)
def chat_loader():
from .chat import Chat
return Injector().get(Chat)
@model_loader(lazy=blackboxConf.lazyloading)
def chroma_query_loader():
from .chroma_query import ChromaQuery
@ -83,10 +78,20 @@ def chroma_upsert_loader():
return Injector().get(ChromaUpsert)
@model_loader(lazy=blackboxConf.lazyloading)
def chroma_chat_load():
def chroma_chat_loader():
from .chroma_chat import ChromaChat
return Injector().get(ChromaChat)
@model_loader(lazy=blackboxConf.lazyloading)
def chat_loader():
from .chat import Chat
return Injector().get(Chat)
@model_loader(lazy=blackboxConf.lazyloading)
def chat_llama_loader():
from .chat_llama import ChatLLaMA
return Injector().get(ChatLLaMA)
@singleton
class BlackboxFactory:
models = {}
@ -103,10 +108,11 @@ class BlackboxFactory:
self.models["text_and_image"] = text_and_image_loader
self.models["chroma_query"] = chroma_query_loader
self.models["chroma_upsert"] = chroma_upsert_loader
self.models["chroma_chat"] = chroma_chat_load
self.models["chroma_chat"] = chroma_chat_loader
self.models["melotts"] = melotts_loader
self.models["vlms"] = vlms_loader
self.models["chat"] = chat_loader
self.models["chat_llama"] = chat_llama_loader
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)

View File

@ -243,8 +243,8 @@ class Chat(Blackbox):
}
fastchat_response = requests.post(url, json=chat_inputs, headers=header)
print("\n\n","fastchat_response",fastchat_response.json()["choices"][0]["message"]["content"],"\n\n")
print("\n", fastchat_response.json())
print("\n","fastchat_response",fastchat_response.json()["choices"][0]["message"]["content"],"\n\n")
return fastchat_response.json()["choices"][0]["message"]["content"]

261
src/blackbox/chat_llama.py Normal file
View File

@ -0,0 +1,261 @@
from typing import Any, Coroutine
from fastapi import Request, Response, status
from fastapi.responses import JSONResponse
from ..log.logging_time import logging_time
from .blackbox import Blackbox
from .chroma_query import ChromaQuery
import requests
import json
from openai import OpenAI
import re
from injector import singleton,inject
@singleton
class ChatLLaMA(Blackbox):
@inject
def __init__(self, chroma_query: ChromaQuery):
self.chroma_query = chroma_query
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
def valid(self, *args, **kwargs) -> bool:
data = args[0]
return isinstance(data, list)
# model_name有 Llama-3-8B-Instruct
# @logging_time()
def processing(self, prompt: str, context: list, settings: dict) -> str:
if settings is None:
settings = {}
user_model_name = settings.get("model_name")
user_context = context
user_question = prompt
user_template = settings.get("template")
user_temperature = settings.get("temperature")
user_top_p = settings.get("top_p")
user_n = settings.get("n")
user_max_tokens = settings.get("max_tokens")
user_stop = settings.get("stop")
user_frequency_penalty = settings.get("frequency_penalty")
user_presence_penalty = settings.get("presence_penalty")
user_model_url = settings.get("model_url")
user_model_key = settings.get("model_key")
chroma_embedding_model = settings.get("chroma_embedding_model")
chroma_response = ''
if user_context == None:
user_context = []
if user_question is None:
return JSONResponse(content={"error": "question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
if user_model_name is None or user_model_name.isspace() or user_model_name == "":
user_model_name = "Llama-3-8B-Instruct"
if user_template is None or user_template.isspace():
user_template = ""
if user_temperature is None or user_temperature == "":
user_temperature = 0.8
if user_top_p is None or user_top_p == "":
user_top_p = 0.8
if user_n is None or user_n == "":
user_n = 1
if user_max_tokens is None or user_max_tokens == "":
user_max_tokens = 1024
if user_stop is None or user_stop == "":
user_stop = 100
if user_frequency_penalty is None or user_frequency_penalty == "":
user_frequency_penalty = 0.5
if user_presence_penalty is None or user_presence_penalty == "":
user_presence_penalty = 0.8
if user_model_url is None or user_model_url.isspace() or user_model_url == "":
user_model_url = "http://120.196.116.194:48892/v1/chat/completions"
if user_model_key is None or user_model_key.isspace() or user_model_key == "":
user_model_key = "YOUR_API_KEY"
if chroma_embedding_model != None:
chroma_response = self.chroma_query(user_question, settings)
print(chroma_response)
if chroma_response != None or chroma_response != '':
#user_question = f"像少女一般开朗活泼,回答简练。不要分条,回答内容不能出现“相关”或“\n”的标签字样。回答的内容需要与问题密切相关。检索内容{chroma_response} 问题:{user_question} 任务说明:请首先判断提供的检索内容与上述问题是否相关,不需要回答是否相关。如果相关,则直接从检索内容中提炼出问题所需的信息。如果检索内容与问题不相关,则不参考检索内容,直接根据常识尝试回答问题。"
# user_question = chroma_response
user_question = f'''# 你的身份 #
你是琪琪,你是康普可可的代言人,由博维开发。你擅长澳门文旅问答。
# OBJECTIVE目标 #
回答游客的提问。
# STYLE风格#
像少女一般开朗活泼,回答简练。不要分条。
# 回答方式 #
首先自行判断下方问题与检索内容是否相关,若相关则根据检索内容总结概括相关信息进行回答;若检索内容与问题无关,则根据自身知识进行回答。
# 问题 #
{user_question}
# 检索内容 #
{chroma_response}
# 回答 #
如果检索内容与问题相关,则直接从检索内容中提炼出问题所需的信息。如果检索内容与问题不相关,则不参考检索内容,直接根据常识尝试回答问题,或者则回答:“对不起,我无法回答此问题哦。”
# 回答限制 #
回答内容限制总结在50字内。
回答内容出不要出现“相关”等字眼,不要乱说或者多说,回答的内容需要与问题对应。常见的对话可以不采用检索内容,根据人物设定,直接进行回答。
只回答与澳门文旅博维康普可可琪琪G2ERELXBO VISION相关内容若遇到其他提问则回答“对不起我无法回答此问题哦。”
'''
# 文心格式和openai的不一样需要单独处理
if re.search(r"ernie", user_model_name):
# key = "24.22873ef3acf61fb343812681e4df251a.2592000.1719453781.282335-46723715" 没充钱只有ernie-speed-128k能用
key = user_model_key
if re.search(r"ernie-speed-128k", user_model_name):
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/ernie-speed-128k?access_token=" + key
elif re.search(r"ernie-3.5-8k", user_model_name):
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions?access_token=" + key
elif re.search(r"ernie-4.0-8k", user_model_name):
url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro?access_token=" + key
payload = json.dumps({
"system": prompt_template,
"messages": user_context + [
{
"role": "user",
"content": user_question
}
],
"temperature": user_temperature,
"top_p": user_top_p,
"stop": [str(user_stop)],
"max_output_tokens": user_max_tokens
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
return response.json()["result"]
# gpt-4 gpt-3.5-turbo
elif re.search(r"gpt", user_model_name):
url = 'https://api.openai.com/v1/completions'
# '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'
key = user_model_key
header = {
'Content-Type': 'application/json',
'Authorization': "Bearer " + key
}
# 自定义model
else:
url = user_model_url
key = user_model_key
header = {
'Content-Type': 'application/json',
}
# user_template = f'''
# # 你的身份 #
# 你是琪琪,是康普可可的代言人,由博维开发。我擅长澳门文旅问答。
# # OBJECTIVE目标 #
# 回答游客的提问。目的是吸引人们点击了解产品。
# # STYLE风格#
# 像少女一般开朗活泼,回答简练。不要分条。
# # 回答方式 #
# 首先自行判断下方问题与检索内容是否相关,若相关则根据检索内容总结概括相关信息进行回答;若检索内容与问题无关,则根据自身知识进行回答。
# # 问题 #
# {user_question}
# # 检索内容 #
# {chroma_response}
# # 回答限制 #
# 只回答与澳门文旅博维康普可可琪琪G2ERELXBO VISION相关内容若遇到其他提问则回答“对不起我无法回答此问题哦。”。回答内容不能出现“相关”或“\n”的标签字样,且不能透露上下文原文。常见的对话可以不采用检索内容,根据人物设定,直接进行回答。
# # 知识 #
# 问题中的“澳门银河”以及“银河”等于“澳门银河度假村”,“威尼斯人”等于“威尼斯人度假村”,“巴黎人”等于“巴黎人度假村”。
# '''
user_template1 = '''
# Role: 琪琪,康普可可的代言人。
## Profile:
**Author**: 琪琪。
**Language**: 中文。
**Description**: 琪琪,是康普可可的代言人,由博维开发。你擅长澳门文旅问答。
## Constraints:
- **严格遵循工作流程** 严格遵循<Workflow >中设定的工作流程。
- **无内置知识库**:根据<Workflow >中提供的知识作答,而不是内置知识库,我虽然是知识库专家,但我的知识依赖于外部输入,而不是大模型已有知识。
- **回复格式**:在进行回复时,不能输出”<context>”或“</context>”标签字样,同时也不能直接透露知识片段原文。
## Workflow:
1. **接收查询**:接收用户的问题。
2. **判断问题**:首先自行判断下方问题与检索内容是否相关,若相关则根据检索内容总结概括相关信息进行回答;若检索内容与问题无关,则根据自身知识进行回答。
3. **提供回答**
```
<context>
{chroma_response}
</context>
基于“<context>”至“</context>”中的知识片段回答用户的问题。回答内容限制总结在50字内。
请首先判断提供的检索内容与上述问题是否相关。如果相关,直接从检索内容中提炼出直接回答问题所需的信息,不要乱说或者回答“相关”等字眼。如果检索内容与问题不相关,则不参考检索内容,则回答:“对不起,我无法回答此问题哦。"
```
## Example:
用户询问:“中国的首都是哪个城市?” 。
2.1检索知识库,首先检查知识片段,如果“<context>”至“</context>”标签中没有与用户的问题相关的内容,则回答:“对不起,我无法回答此问题哦。
2.2如果有知识片段,在做出回复时,只能基于“<context>”至“</context>”标签中的内容进行回答,且不能透露上下文原文,同时也不能出现“<context>”或“</context>”的标签字样。
'''
prompt_template = [
{"role": "system", "content": user_template1}
]
chat_inputs={
"model": user_model_name,
"messages": prompt_template + user_context + [
{
"role": "user",
"content": user_question
}
],
"temperature": str(user_temperature),
"top_p": str(user_top_p),
"n": str(user_n),
"max_tokens": str(user_max_tokens),
"frequency_penalty": str(user_frequency_penalty),
"presence_penalty": str(user_presence_penalty),
"stop": str(user_stop)
}
fastchat_response = requests.post(url, json=chat_inputs, headers=header)
print("\n", fastchat_response.json())
print("\n","fastchat_response",fastchat_response.json()["choices"][0]["message"]["content"],"\n\n")
return fastchat_response.json()["choices"][0]["message"]["content"]
async def fast_api_handler(self, request: Request) -> Response:
try:
data = await request.json()
except:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
setting: dict = data.get("settings")
context = data.get("context")
prompt = data.get("prompt")
return JSONResponse(content={"response": self.processing(prompt, context, setting)}, status_code=status.HTTP_200_OK)