feat: support no images chat

This commit is contained in:
Ivan087
2024-09-02 11:33:10 +08:00
parent ffc7acf430
commit 9f080e2b1d

View File

@ -112,15 +112,18 @@ class VLMS(Blackbox):
settings = {}
# Transform the images into base64 format where openai format need.
if is_base64(images): # image as base64 str
images_data = images
elif isinstance(images,bytes): # image as bytes
images_data = str(base64.b64encode(images),'utf-8')
else: # image as pathLike str
# with open(images, "rb") as img_file:
# images_data = str(base64.b64encode(img_file.read()), 'utf-8')
res = requests.get(images)
images_data = str(base64.b64encode(res.content),'utf-8')
if images:
if is_base64(images): # image as base64 str
images_data = images
elif isinstance(images,bytes): # image as bytes
images_data = str(base64.b64encode(images),'utf-8')
else: # image as pathLike str
# with open(images, "rb") as img_file:
# images_data = str(base64.b64encode(img_file.read()), 'utf-8')
res = requests.get(images)
images_data = str(base64.b64encode(res.content),'utf-8')
else:
images_data = None
## AutoLoad Model
# url = 'http://10.6.80.87:8000/' + model_name + '/'
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
@ -132,38 +135,74 @@ class VLMS(Blackbox):
## Lmdeploy
if not user_context:
user_context = []
# user_context = [{'role':'user','content':'你好'}, {'role': 'assistant', 'content': '你好!很高兴为你提供帮助。'}]
## Predefine user_context only for testing
# user_context = [{'role':'user','content':'你好,我叫康康,你是谁?'}, {'role': 'assistant', 'content': '你好!很高兴为你提供帮助。'}]
user_context = [{
'role': 'user',
'content': [{
'type': 'text',
'text': '图中有什么,请描述一下',
}, {
'type': 'image_url',
'image_url': {
'url': 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
},
}]
},{
'role': 'assistant',
'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
}
]
api_client = APIClient(self.url)
model_name = api_client.available_models[0]
messages = user_context + [{
'role': 'user',
'content': [{
'type': 'text',
'text': prompt,
}, {
'type': 'image_url',
'image_url': {
'url': f"data:image/jpeg;base64,{images_data}",
# './val_data/image_5.jpg',
},
}]
}
]
# Reformat input into openai format to request.
if images_data:
messages = user_context + [{
'role': 'user',
'content': [{
'type': 'text',
'text': prompt,
},{
'type': 'image_url',
'image_url': { # Image two
'url':
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
# './val_data/image_5.jpg'
f"data:image/jpeg;base64,{images_data}",
},
# },{ # Image one
# 'type': 'image_url',
# 'image_url': {
# 'url': 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
# },
}]
}
]
else:
messages = user_context + [{
'role': 'user',
'content': [{
'type': 'text',
'text': prompt,
}]
}
]
responses = ''
total_token_usage = 0 # which can be used to count the cost of a query
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
messages=messages,stream = True,
messages=messages,#stream = True,
**settings,
# session_id=,
)):
# Stream output
print(item["choices"][0]["delta"]['content'],end='')
responses += item["choices"][0]["delta"]['content']
# print(item["choices"][0]["delta"]['content'],end='')
# responses += item["choices"][0]["delta"]['content']
# print(item["choices"][0]["message"]['content'])
# responses += item["choices"][0]["message"]['content']
print(item["choices"][0]["message"]['content'])
responses += item["choices"][0]["message"]['content']
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
user_context = messages + [{'role': 'assistant', 'content': responses}]
@ -185,13 +224,13 @@ class VLMS(Blackbox):
model_name = data.get("model_name")
prompt = data.get("prompt")
settings: dict = data.get('settings')
if json_request:
img_data = data.get("img_data")
settings: dict = data.get('settings')
else:
img_data = await data.get("img_data").read()
settings: dict = ast.literal_eval(data.get('settings'))
if settings: settings = ast.literal_eval(settings)
if prompt is None:
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)