mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
style: convert /home/gpu/ to /
This commit is contained in:
@ -70,7 +70,7 @@ def get_all_files(folder_path):
|
||||
|
||||
|
||||
# 加载文档和拆分文档
|
||||
loader = TextLoader("/home/gpu/Workspace/jarvis-models/sample/RAG_zh.txt")
|
||||
loader = TextLoader("/Workspace/jarvis-models/sample/RAG_zh.txt")
|
||||
|
||||
documents = loader.load()
|
||||
|
||||
@ -84,8 +84,8 @@ ids = ["20240521_store"+str(i) for i in range(len(docs))]
|
||||
|
||||
|
||||
# 加载embedding模型和chroma server
|
||||
embedding_model = SentenceTransformerEmbeddings(model_name='/home/gpu/Workspace/Models/BAAI/bge-large-zh-v1.5', model_kwargs={"device": "cuda"})
|
||||
client = chromadb.HttpClient(host='10.6.81.119', port=7000)
|
||||
embedding_model = SentenceTransformerEmbeddings(model_name='/Workspace/Models/BAAI/bge-large-zh-v1.5', model_kwargs={"device": "cuda"})
|
||||
client = chromadb.HttpClient(host='192.168.0.200', port=7000)
|
||||
|
||||
id = "g2e"
|
||||
#client.delete_collection(id)
|
||||
@ -106,8 +106,8 @@ print("collection_number",collection_number)
|
||||
|
||||
# # chroma 召回
|
||||
# from chromadb.utils import embedding_functions
|
||||
# embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="/home/gpu/Workspace/Models/BAAI/bge-large-zh-v1.5", device = "cuda")
|
||||
# client = chromadb.HttpClient(host='10.6.81.119', port=7000)
|
||||
# embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="/Workspace/Models/BAAI/bge-large-zh-v1.5", device = "cuda")
|
||||
# client = chromadb.HttpClient(host='192.168.0.200', port=7000)
|
||||
# collection = client.get_collection("g2e", embedding_function=embedding_model)
|
||||
|
||||
# print(collection.count())
|
||||
@ -152,7 +152,7 @@ print("collection_number",collection_number)
|
||||
# 'Content-Type': 'application/json',
|
||||
# 'Authorization': "Bearer " + key
|
||||
# }
|
||||
# url = "http://10.6.81.119:23333/v1/chat/completions"
|
||||
# url = "http://192.168.0.200:23333/v1/chat/completions"
|
||||
|
||||
# fastchat_response = requests.post(url, json=chat_inputs, headers=header)
|
||||
# # print(fastchat_response.json())
|
||||
|
||||
@ -70,7 +70,7 @@ def get_all_files(folder_path):
|
||||
|
||||
|
||||
# 加载文档和拆分文档
|
||||
loader = TextLoader("/home/gpu/Workspace/jarvis-models/sample/RAG_en.txt")
|
||||
loader = TextLoader("/Workspace/jarvis-models/sample/RAG_en.txt")
|
||||
|
||||
documents = loader.load()
|
||||
|
||||
@ -84,8 +84,8 @@ ids = ["20240521_store"+str(i) for i in range(len(docs))]
|
||||
|
||||
|
||||
# 加载embedding模型和chroma server
|
||||
embedding_model = SentenceTransformerEmbeddings(model_name='/home/gpu/Workspace/Models/BAAI/bge-small-en-v1.5', model_kwargs={"device": "cuda"})
|
||||
client = chromadb.HttpClient(host='10.6.81.119', port=7000)
|
||||
embedding_model = SentenceTransformerEmbeddings(model_name='/Workspace/Models/BAAI/bge-small-en-v1.5', model_kwargs={"device": "cuda"})
|
||||
client = chromadb.HttpClient(host='192.168.0.200', port=7000)
|
||||
|
||||
id = "g2e_english"
|
||||
client.delete_collection(id)
|
||||
@ -106,8 +106,8 @@ print("collection_number",collection_number)
|
||||
|
||||
# # chroma 召回
|
||||
# from chromadb.utils import embedding_functions
|
||||
# embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="/home/gpu/Workspace/Models/BAAI/bge-large-zh-v1.5", device = "cuda")
|
||||
# client = chromadb.HttpClient(host='10.6.81.119', port=7000)
|
||||
# embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="/Workspace/Models/BAAI/bge-large-zh-v1.5", device = "cuda")
|
||||
# client = chromadb.HttpClient(host='192.168.0.200', port=7000)
|
||||
# collection = client.get_collection("g2e", embedding_function=embedding_model)
|
||||
|
||||
# print(collection.count())
|
||||
@ -152,7 +152,7 @@ print("collection_number",collection_number)
|
||||
# 'Content-Type': 'application/json',
|
||||
# 'Authorization': "Bearer " + key
|
||||
# }
|
||||
# url = "http://10.6.81.119:23333/v1/chat/completions"
|
||||
# url = "http://192.168.0.200:23333/v1/chat/completions"
|
||||
|
||||
# fastchat_response = requests.post(url, json=chat_inputs, headers=header)
|
||||
# # print(fastchat_response.json())
|
||||
|
||||
@ -66,7 +66,7 @@ def get_all_files(folder_path):
|
||||
|
||||
|
||||
# 加载文档和拆分文档
|
||||
# loader = TextLoader("/home/gpu/Workspace/jarvis-models/sample/RAG_zh.txt")
|
||||
# loader = TextLoader("/Workspace/jarvis-models/sample/RAG_zh.txt")
|
||||
|
||||
# documents = loader.load()
|
||||
|
||||
@ -80,8 +80,8 @@ def get_all_files(folder_path):
|
||||
|
||||
|
||||
# # 加载embedding模型和chroma server
|
||||
# embedding_model = SentenceTransformerEmbeddings(model_name='/home/gpu/Workspace/Models/BAAI/bge-large-zh-v1.5', model_kwargs={"device": "cuda"})
|
||||
# client = chromadb.HttpClient(host='10.6.81.119', port=7000)
|
||||
# embedding_model = SentenceTransformerEmbeddings(model_name='/Workspace/Models/BAAI/bge-large-zh-v1.5', model_kwargs={"device": "cuda"})
|
||||
# client = chromadb.HttpClient(host='192.168.0.200', port=7000)
|
||||
|
||||
# id = "g2e"
|
||||
# client.delete_collection(id)
|
||||
@ -102,8 +102,8 @@ def get_all_files(folder_path):
|
||||
|
||||
# chroma 召回
|
||||
from chromadb.utils import embedding_functions
|
||||
embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="/home/gpu/Workspace/Models/BAAI/bge-large-zh-v1.5", device = "cuda")
|
||||
client = chromadb.HttpClient(host='10.6.81.119', port=7000)
|
||||
embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="/Workspace/Models/BAAI/bge-large-zh-v1.5", device = "cuda")
|
||||
client = chromadb.HttpClient(host='192.168.0.200', port=7000)
|
||||
collection = client.get_collection("g2e", embedding_function=embedding_model)
|
||||
|
||||
print(collection.count())
|
||||
@ -148,7 +148,7 @@ print("time: ", time.time() - start_time)
|
||||
# 'Content-Type': 'application/json',
|
||||
# 'Authorization': "Bearer " + key
|
||||
# }
|
||||
# url = "http://10.6.81.119:23333/v1/chat/completions"
|
||||
# url = "http://192.168.0.200:23333/v1/chat/completions"
|
||||
|
||||
# fastchat_response = requests.post(url, json=chat_inputs, headers=header)
|
||||
# # print(fastchat_response.json())
|
||||
|
||||
@ -9,16 +9,16 @@ from langchain_community.embeddings.sentence_transformer import SentenceTransfor
|
||||
import time
|
||||
|
||||
# chroma run --path chroma_db/ --port 8000 --host 0.0.0.0
|
||||
# loader = TextLoader("/home/administrator/Workspace/chroma_data/粤语语料.txt",encoding="utf-8")
|
||||
loader = TextLoader("/home/administrator/Workspace/jarvis-models/sample/RAG_boss.txt")
|
||||
# loader = TextLoader("/Workspace/chroma_data/粤语语料.txt",encoding="utf-8")
|
||||
loader = TextLoader("/Workspace/jarvis-models/sample/RAG_boss.txt")
|
||||
documents = loader.load()
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10, chunk_overlap=0, length_function=len, is_separator_regex=True,separators=['\n', '\n\n'])
|
||||
docs = text_splitter.split_documents(documents)
|
||||
print("len(docs)", len(docs))
|
||||
ids = ["粤语语料"+str(i) for i in range(len(docs))]
|
||||
|
||||
embedding_model = SentenceTransformerEmbeddings(model_name='/home/administrator/Workspace/Models/BAAI/bge-m3', model_kwargs={"device": "cuda:1"})
|
||||
client = chromadb.HttpClient(host='172.16.4.7', port=7000)
|
||||
embedding_model = SentenceTransformerEmbeddings(model_name='/Workspace/Models/BAAI/bge-m3', model_kwargs={"device": "cuda:1"})
|
||||
client = chromadb.HttpClient(host='192.168.0.200', port=7000)
|
||||
|
||||
id = "boss"
|
||||
client.delete_collection(id)
|
||||
@ -28,13 +28,13 @@ db = Chroma.from_documents(documents=docs, embedding=embedding_model, ids=ids, c
|
||||
|
||||
|
||||
|
||||
embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="/home/administrator/Workspace/Models/BAAI/bge-m3", device = "cuda:1")
|
||||
embedding_model = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="/Workspace/Models/BAAI/bge-m3", device = "cuda:1")
|
||||
|
||||
client = chromadb.HttpClient(host='172.16.4.7', port=7000)
|
||||
client = chromadb.HttpClient(host='192.168.0.200', port=7000)
|
||||
|
||||
collection = client.get_collection(id, embedding_function=embedding_model)
|
||||
|
||||
reranker_model = CrossEncoder("/home/administrator/Workspace/Models/BAAI/bge-reranker-v2-m3", max_length=512, device = "cuda:1")
|
||||
reranker_model = CrossEncoder("/Workspace/Models/BAAI/bge-reranker-v2-m3", max_length=512, device = "cuda:1")
|
||||
|
||||
while True:
|
||||
usr_question = input("\n 请输入问题: ")
|
||||
|
||||
Reference in New Issue
Block a user