support formdata of request

This commit is contained in:
Ivan087
2024-08-20 18:02:44 +08:00
parent 4c3756811d
commit 4d260b3361

View File

@ -1,11 +1,11 @@
from fastapi import Request, Response, status
from fastapi.responses import JSONResponse
from injector import singleton,inject
from typing import Optional
from typing import Optional, List
from .blackbox import Blackbox
from ..log.logging_time import logging_time
from .chroma_query import ChromaQuery
# from .chroma_query import ChromaQuery
from ..configuration import VLMConf
import requests
@ -39,8 +39,18 @@ class VLMS(Blackbox):
data = args[0]
return isinstance(data, list)
def processing(self, prompt, images, model_name: Optional[str] = None) -> str:
def processing(self, prompt:str, images:str | bytes, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
"""
Args:
prompt: a string query to the model.
images: a base64 string of image data;
user_context: a list of history conversation, should be a list of openai format.
Return:
response: a string
history: a list
"""
if model_name == "Qwen-VL-Chat":
model_name = "infer-qwen-vl"
elif model_name == "llava-llama-3-8b-v1_1-transformers":
@ -49,36 +59,33 @@ class VLMS(Blackbox):
model_name = "infer-qwen-vl"
# Transform the images into base64 format where openai format need.
if is_base64(images): # image as base64 str
images_data = images
elif isinstance(images,bytes): # image as bytes
images_data = str(base64.b64encode(images),'utf-8')
else: # image as pathLike str
# with open(images, "rb") as img_file:
# images_data = str(base64.b64encode(img_file.read()), 'utf-8')
res = requests.get(images)
images_data = str(base64.b64encode(res.content),'utf-8')
## AutoLoad Model
# url = 'http://10.6.80.87:8000/' + model_name + '/'
if is_base64(images):
images_data = images
else:
# print("{}Type of image data in form {}".format('#'*20,type(images)))
# print("{}Type of image data in form {}".format('#'*20,type(images.file)))
# byte_stream = io.BytesIO(images.read())
# print("{}Type of image data in form {}".format('#'*20,type(byte_stream)))
# # roiImg = Image.open(byte_stream)
# # print("{}Successful {}".format('#'*20,type(roiImg)))
# return str(type(byte_stream))
# images_data = base64.b64encode(byte_stream)
with open(images, "rb") as img_file:
# images_data = str(base64.b64encode(img_file.read()), 'utf-8')
images_data = base64.b64encode(img_file.read())
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
# data = requests.post(url, json=data_input)
# print(data.text)
# return data.text
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
## Lmdeploy
if not user_context:
user_context = []
# user_context = [{'role':'user','content':'你好'}, {'role': 'assistant', 'content': '你好!很高兴为你提供帮助。'}]
api_client = APIClient(self.url)
# api_client = APIClient(f'http://10.6.80.87:23333')
model_name = api_client.available_models[0]
messages = [{
'role':
'user',
messages = user_context + [{
'role': 'user',
'content': [{
'type': 'text',
'text': prompt,
@ -93,25 +100,37 @@ class VLMS(Blackbox):
]
responses = ''
total_token_usage = 0 # which can be used to count the cost of a query
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
messages=messages#,stream = True
)):
print(item["choices"][0]["message"]['content'])
# print(item["choices"][0]["message"]['content'])
responses += item["choices"][0]["message"]['content']
total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
user_context = messages + [{'role': 'assistant', 'content': responses}]
return responses, user_context
return responses
# return data.text
async def fast_api_handler(self, request: Request) -> Response:
json_request = True
try:
content_type = request.headers['content-type']
if content_type == 'application/json':
data = await request.json()
else:
data = await request.form()
except:
json_request = False
except Exception as e:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
model_name = data.get("model_name")
prompt = data.get("prompt")
if json_request:
img_data = data.get("img_data")
else:
img_data = await data.get("img_data").read()
if prompt is None:
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
@ -119,6 +138,7 @@ class VLMS(Blackbox):
if model_name is None or model_name.isspace():
model_name = "Qwen-VL-Chat"
response, history = self.processing(prompt, img_data, model_name)
# jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
return JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}, status_code=status.HTTP_200_OK)
return JSONResponse(content={"response": response, "history": history}, status_code=status.HTTP_200_OK)