support generation config

This commit is contained in:
Ivan087
2024-08-21 14:38:08 +08:00
parent 4d260b3361
commit 44561de2c5

View File

@ -10,6 +10,8 @@ from ..configuration import VLMConf
import requests import requests
import base64 import base64
import copy
import ast
import io import io
from PIL import Image from PIL import Image
@ -27,11 +29,48 @@ class VLMS(Blackbox):
@inject @inject
def __init__(self, vlm_config: VLMConf): def __init__(self, vlm_config: VLMConf):
# Chroma database initially set up for RAG for vision model. """
# It could be expended to history store. Initialization for endpoint url and generation config.
# self.chroma_query = chroma_query - temperature (float): to modulate the next token probability
- top_p (float): If set to float < 1, only the smallest set of most
probable tokens with probabilities that add up to top_p or higher
are kept for generation.
- max_tokens (int | None): output token nums. Default to None.
- repetition_penalty (float): The parameter for repetition penalty.
1.0 means no penalty
- stop (str | List[str] | None): To stop generating further
tokens. Only accept stop words that's encoded to one token idex.
Additional arguments supported by LMDeploy:
- top_k (int): The number of the highest probability vocabulary
tokens to keep for top-k-filtering
- ignore_eos (bool): indicator for ignoring eos
- skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be True."""
self.url = vlm_config.url self.url = vlm_config.url
self.temperature: float = 0.7
self.top_p:float = 1
self.max_tokens: (int |None) = 512
self.repetition_penalty: float = 1
self.stop: (str | List[str] |None) = ['<|endoftext|>','<|im_end|>']
self.top_k: (int) = None
self.ignore_eos: (bool) = False
self.skip_special_tokens: (bool) = True
self.settings: dict = {
"temperature": self.temperature,
"top_p":self.top_p,
"max_tokens": self.max_tokens,
"repetition_penalty": self.repetition_penalty,
"stop": self.stop,
"top_k": self.top_k,
"ignore_eos": self.ignore_eos,
"skip_special_tokens": self.skip_special_tokens,
}
def __call__(self, *args, **kwargs): def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs) return self.processing(*args, **kwargs)
@ -39,25 +78,34 @@ class VLMS(Blackbox):
data = args[0] data = args[0]
return isinstance(data, list) return isinstance(data, list)
def processing(self, prompt:str, images:str | bytes, model_name: Optional[str] = None, user_context: List[dict] = None) -> str: def processing(self, prompt:str, images:str | bytes, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
""" """
Args: Args:
prompt: a string query to the model. prompt: a string query to the model.
images: a base64 string of image data; images: a base64 string of image data;
user_context: a list of history conversation, should be a list of openai format. user_context: a list of history conversation, should be a list of openai format.
settings: a dictionary set by user with fields stated in __init__
Return: Return:
response: a string response: a string
history: a list history: a list
""" """
if model_name == "Qwen-VL-Chat": # if model_name == "Qwen-VL-Chat":
model_name = "infer-qwen-vl" # model_name = "infer-qwen-vl"
elif model_name == "llava-llama-3-8b-v1_1-transformers": # elif model_name == "llava-llama-3-8b-v1_1-transformers":
model_name = "infer-lav-lam-v1-1" # model_name = "infer-lav-lam-v1-1"
# else:
# model_name = "infer-qwen-vl"
if settings:
for k in settings:
if k not in self.settings:
print("Warning: '{}' is not a support argument and ignore this argment, check the arguments {}".format(k,self.settings.keys()))
settings.pop(k)
tmp = copy.deepcopy(self.settings)
tmp.update(settings)
settings = tmp
else: else:
model_name = "infer-qwen-vl" settings = {}
# Transform the images into base64 format where openai format need. # Transform the images into base64 format where openai format need.
if is_base64(images): # image as base64 str if is_base64(images): # image as base64 str
@ -102,11 +150,18 @@ class VLMS(Blackbox):
responses = '' responses = ''
total_token_usage = 0 # which can be used to count the cost of a query total_token_usage = 0 # which can be used to count the cost of a query
for i,item in enumerate(api_client.chat_completions_v1(model=model_name, for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
messages=messages#,stream = True messages=messages,stream = True,
**settings,
# session_id=,
)): )):
# Stream output
print(item["choices"][0]["delta"]['content'],end='')
responses += item["choices"][0]["delta"]['content']
# print(item["choices"][0]["message"]['content']) # print(item["choices"][0]["message"]['content'])
responses += item["choices"][0]["message"]['content'] # responses += item["choices"][0]["message"]['content']
total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *} # total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
user_context = messages + [{'role': 'assistant', 'content': responses}] user_context = messages + [{'role': 'assistant', 'content': responses}]
return responses, user_context return responses, user_context
@ -126,11 +181,13 @@ class VLMS(Blackbox):
model_name = data.get("model_name") model_name = data.get("model_name")
prompt = data.get("prompt") prompt = data.get("prompt")
if json_request: if json_request:
img_data = data.get("img_data") img_data = data.get("img_data")
settings: dict = data.get('settings')
else: else:
img_data = await data.get("img_data").read() img_data = await data.get("img_data").read()
settings: dict = ast.literal_eval(data.get('settings'))
if prompt is None: if prompt is None:
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST) return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
@ -138,7 +195,7 @@ class VLMS(Blackbox):
if model_name is None or model_name.isspace(): if model_name is None or model_name.isspace():
model_name = "Qwen-VL-Chat" model_name = "Qwen-VL-Chat"
response, history = self.processing(prompt, img_data, model_name) response, history = self.processing(prompt, img_data,settings, model_name)
# jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8") # jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
return JSONResponse(content={"response": response, "history": history}, status_code=status.HTTP_200_OK) return JSONResponse(content={"response": response, "history": history}, status_code=status.HTTP_200_OK)