mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
93
src/blackbox/cosyvoicetts.py
Normal file
93
src/blackbox/cosyvoicetts.py
Normal file
@ -0,0 +1,93 @@
|
||||
import io
|
||||
import time
|
||||
|
||||
import requests
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
from injector import inject
|
||||
from injector import singleton
|
||||
|
||||
from ..log.logging_time import logging_time
|
||||
|
||||
from ..configuration import CosyVoiceConf
|
||||
from .blackbox import Blackbox
|
||||
|
||||
import soundfile
|
||||
import pyloudnorm as pyln
|
||||
import sys
|
||||
sys.path.append('/home/gpu/Workspace/CosyVoice')
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
import torchaudio
|
||||
|
||||
import os
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@singleton
|
||||
class CosyVoiceTTS(Blackbox):
|
||||
mode: str
|
||||
url: str
|
||||
speed: int
|
||||
device: str
|
||||
language: str
|
||||
speaker: str
|
||||
|
||||
@logging_time(logger=logger)
|
||||
def model_init(self, cosyvoice_config: CosyVoiceConf) -> None:
|
||||
self.speed = cosyvoice_config.speed
|
||||
self.device = cosyvoice_config.device
|
||||
self.language = cosyvoice_config.language
|
||||
self.speaker = cosyvoice_config.speaker
|
||||
self.device = cosyvoice_config.device
|
||||
self.url = ''
|
||||
self.mode = cosyvoice_config.mode
|
||||
self.cosyvoicetts = None
|
||||
self.speaker_ids = None
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(cosyvoice_config.device)
|
||||
if self.mode == 'local':
|
||||
self.cosyvoicetts = CosyVoice('/home/gpu/Workspace/Models/CosyVoice/pretrained_models/CosyVoice-300M')
|
||||
|
||||
else:
|
||||
self.url = cosyvoice_config.url
|
||||
logging.info('#### Initializing CosyVoiceTTS Service in cuda:' + str(cosyvoice_config.device) + ' mode...')
|
||||
|
||||
@inject
|
||||
def __init__(self, cosyvoice_config: CosyVoiceConf) -> None:
|
||||
self.model_init(cosyvoice_config)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.processing(*args, **kwargs)
|
||||
|
||||
def valid(self, *args, **kwargs) -> bool:
|
||||
text = args[0]
|
||||
return isinstance(text, str)
|
||||
|
||||
@logging_time(logger=logger)
|
||||
def processing(self, *args, **kwargs) -> io.BytesIO | bytes:
|
||||
text = args[0]
|
||||
current_time = time.time()
|
||||
if self.mode == 'local':
|
||||
audio = self.cosyvoicetts.inference_sft(text, self.language)
|
||||
f = io.BytesIO()
|
||||
soundfile.write(f, audio['tts_speech'].cpu().numpy().squeeze(0), 22050, format='wav')
|
||||
f.seek(0)
|
||||
print("#### CosyVoiceTTS Service consume - local : ", (time.time() - current_time))
|
||||
return f.read()
|
||||
else:
|
||||
message = {
|
||||
"text": text
|
||||
}
|
||||
response = requests.post(self.url, json=message)
|
||||
print("#### CosyVoiceTTS Service consume - docker : ", (time.time()-current_time))
|
||||
return response.content
|
||||
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
try:
|
||||
data = await request.json()
|
||||
except:
|
||||
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
text = data.get("text")
|
||||
if text is None:
|
||||
return JSONResponse(content={"error": "text is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
return Response(content=self.processing(text), media_type="audio/wav", headers={"Content-Disposition": "attachment; filename=audio.wav"})
|
||||
108
src/blackbox/melotts.py
Normal file
108
src/blackbox/melotts.py
Normal file
@ -0,0 +1,108 @@
|
||||
import io
|
||||
import time
|
||||
|
||||
import requests
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
from injector import inject
|
||||
from injector import singleton
|
||||
|
||||
from ..log.logging_time import logging_time
|
||||
|
||||
from ..configuration import MeloConf
|
||||
from .blackbox import Blackbox
|
||||
|
||||
import soundfile
|
||||
import pyloudnorm as pyln
|
||||
from melo.api import TTS
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@singleton
|
||||
class MeloTTS(Blackbox):
|
||||
mode: str
|
||||
url: str
|
||||
speed: int
|
||||
device: str
|
||||
language: str
|
||||
speaker: str
|
||||
|
||||
@logging_time(logger=logger)
|
||||
def model_init(self, melo_config: MeloConf) -> None:
|
||||
self.speed = melo_config.speed
|
||||
self.device = melo_config.device
|
||||
self.language = melo_config.language
|
||||
self.speaker = melo_config.speaker
|
||||
self.device = melo_config.device
|
||||
self.url = ''
|
||||
self.mode = melo_config.mode
|
||||
self.melotts = None
|
||||
self.speaker_ids = None
|
||||
if self.mode == 'local':
|
||||
self.melotts = TTS(language=self.language, device=self.device)
|
||||
self.speaker_ids = self.melotts.hps.data.spk2id
|
||||
else:
|
||||
self.url = melo_config.url
|
||||
logging.info('#### Initializing MeloTTS Service in ' + self.device + ' mode...')
|
||||
|
||||
@inject
|
||||
def __init__(self, melo_config: MeloConf) -> None:
|
||||
self.model_init(melo_config)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.processing(*args, **kwargs)
|
||||
|
||||
def valid(self, *args, **kwargs) -> bool:
|
||||
text = args[0]
|
||||
return isinstance(text, str)
|
||||
|
||||
@logging_time(logger=logger)
|
||||
def processing(self, *args, **kwargs) -> io.BytesIO | bytes:
|
||||
text = args[0]
|
||||
current_time = time.time()
|
||||
if self.mode == 'local':
|
||||
audio = self.melotts.tts_to_file(text, self.speaker_ids[self.speaker], speed=self.speed)
|
||||
f = io.BytesIO()
|
||||
soundfile.write(f, audio, 44100, format='wav')
|
||||
f.seek(0)
|
||||
# print("#### MeloTTS Service consume - local : ", (time.time() - current_time))
|
||||
# return f.read()
|
||||
|
||||
|
||||
# Read the audio data from the buffer
|
||||
data, rate = soundfile.read(f, dtype='float32')
|
||||
|
||||
# Peak normalization
|
||||
peak_normalized_audio = pyln.normalize.peak(data, -1.0)
|
||||
|
||||
# Integrated loudness normalization
|
||||
meter = pyln.Meter(rate)
|
||||
loudness = meter.integrated_loudness(peak_normalized_audio)
|
||||
loudness_normalized_audio = pyln.normalize.loudness(peak_normalized_audio, loudness, -12.0)
|
||||
|
||||
# Write the loudness normalized audio to an in-memory buffer
|
||||
normalized_audio_buffer = io.BytesIO()
|
||||
soundfile.write(normalized_audio_buffer, loudness_normalized_audio, rate, format='wav')
|
||||
normalized_audio_buffer.seek(0)
|
||||
|
||||
print("#### MeloTTS Service consume - local : ", (time.time() - current_time))
|
||||
return normalized_audio_buffer.read()
|
||||
|
||||
else:
|
||||
message = {
|
||||
"text": text
|
||||
}
|
||||
response = requests.post(self.url, json=message)
|
||||
print("#### MeloTTS Service consume - docker : ", (time.time()-current_time))
|
||||
return response.content
|
||||
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
try:
|
||||
data = await request.json()
|
||||
except:
|
||||
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
text = data.get("text")
|
||||
if text is None:
|
||||
return JSONResponse(content={"error": "text is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
return Response(content=self.processing(text), media_type="audio/wav", headers={"Content-Disposition": "attachment; filename=audio.wav"})
|
||||
@ -12,13 +12,13 @@ import requests
|
||||
import base64
|
||||
import copy
|
||||
import ast
|
||||
import random
|
||||
from time import time
|
||||
|
||||
import io
|
||||
from PIL import Image
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
import io
|
||||
from PIL import Image
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
|
||||
def is_base64(value) -> bool:
|
||||
try:
|
||||
@ -50,8 +50,8 @@ class VLMS(Blackbox):
|
||||
- ignore_eos (bool): indicator for ignoring eos
|
||||
- skip_special_tokens (bool): Whether or not to remove special tokens
|
||||
in the decoding. Default to be True."""
|
||||
self.url = vlm_config.url
|
||||
|
||||
self.model_dict = vlm_config.urls
|
||||
self.model_url = None
|
||||
self.temperature: float = 0.7
|
||||
self.top_p:float = 1
|
||||
self.max_tokens: (int |None) = 512
|
||||
@ -81,7 +81,7 @@ class VLMS(Blackbox):
|
||||
data = args[0]
|
||||
return isinstance(data, list)
|
||||
|
||||
def processing(self, prompt:str, images:str | bytes, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
|
||||
def processing(self, prompt:str | None, images:str | bytes | None, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
|
||||
"""
|
||||
Args:
|
||||
prompt: a string query to the model.
|
||||
@ -105,6 +105,9 @@ class VLMS(Blackbox):
|
||||
else:
|
||||
settings = {}
|
||||
|
||||
if not prompt:
|
||||
prompt = '你是一个辅助机器人,请就此图做一个简短的概括性描述,包括图中的主体物品及状态,不超过50字。' if images else '你好'
|
||||
|
||||
# Transform the images into base64 format where openai format need.
|
||||
if images:
|
||||
if is_base64(images): # image as base64 str
|
||||
@ -148,7 +151,11 @@ class VLMS(Blackbox):
|
||||
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
|
||||
# }
|
||||
# ]
|
||||
api_client = APIClient(self.url)
|
||||
|
||||
user_context = self.keep_last_k_images(user_context,k = 1)
|
||||
if self.model_url is None: self.model_url = self._get_model_url(model_name)
|
||||
|
||||
api_client = APIClient(self.model_url)
|
||||
# api_client = APIClient("http://10.6.80.91:23333")
|
||||
model_name = api_client.available_models[0]
|
||||
# Reformat input into openai format to request.
|
||||
@ -198,10 +205,28 @@ class VLMS(Blackbox):
|
||||
print(item["choices"][0]["message"]['content'])
|
||||
responses += item["choices"][0]["message"]['content']
|
||||
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
|
||||
|
||||
user_context = messages + [{'role': 'assistant', 'content': responses}]
|
||||
self.custom_print(user_context)
|
||||
return responses, user_context
|
||||
|
||||
def _get_model_url(self,model_name:str | None):
|
||||
available_models = {}
|
||||
for model, url in self.model_dict.items():
|
||||
try:
|
||||
response = requests.get(url,timeout=3)
|
||||
if response.status_code == 200:
|
||||
available_models[model] = url
|
||||
except Exception as e:
|
||||
# print(e)
|
||||
pass
|
||||
if not available_models: print("There are no available running models and please check your endpoint urls.")
|
||||
if model_name and model_name in available_models:
|
||||
return available_models[model_name]
|
||||
else:
|
||||
model = random.choice(list(available_models.keys()))
|
||||
print(f"No such model {model_name}, using {model} instead.") if model_name else print(f"Using random model {model}.")
|
||||
return available_models[model]
|
||||
|
||||
def _into_openai_format(self, context:List[list]) -> List[dict]:
|
||||
"""
|
||||
Convert the data into openai format.
|
||||
@ -255,7 +280,35 @@ class VLMS(Blackbox):
|
||||
|
||||
return user_context
|
||||
|
||||
def keep_last_k_images(self, user_context: list, k:int=2):
|
||||
count = 0
|
||||
result =[]
|
||||
for item in user_context[::-1]:
|
||||
if item['role'] == 'user' and len(item['content']) > 1:
|
||||
for idx, info in enumerate(item['content']):
|
||||
if info['type'] in ('image_url','image') and count >= k:
|
||||
item['content'].pop(idx)
|
||||
# item['content'].insert(idx, {'type': 'text', 'text': '<IMAGE>'})
|
||||
elif info['type'] in ('image_url','image') and count < k:
|
||||
count += 1
|
||||
else:
|
||||
continue
|
||||
result.append(item)
|
||||
return result[::-1]
|
||||
|
||||
|
||||
def custom_print(self, user_context: list):
|
||||
result = []
|
||||
for item in user_context:
|
||||
if item['role'] == 'user':
|
||||
for idx, info in enumerate(item['content']):
|
||||
if info['type'] in ('image_url','image'):
|
||||
item['content'].pop(idx)
|
||||
item['content'].insert(idx, {'type': 'image', 'image': '##<IMAGE>##'})
|
||||
else:
|
||||
continue
|
||||
result.append(item)
|
||||
print(result)
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
## TODO: add support for multiple images and support image in form-data format
|
||||
json_request = True
|
||||
@ -273,7 +326,6 @@ class VLMS(Blackbox):
|
||||
prompt = data.get("prompt")
|
||||
settings: dict = data.get('settings')
|
||||
context = data.get("context")
|
||||
|
||||
if not context:
|
||||
user_context = []
|
||||
elif isinstance(context[0], list):
|
||||
@ -292,8 +344,8 @@ class VLMS(Blackbox):
|
||||
if prompt is None:
|
||||
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
|
||||
if model_name is None or model_name.isspace():
|
||||
model_name = "Qwen-VL-Chat"
|
||||
# if model_name is None or model_name.isspace():
|
||||
# model_name = "Qwen-VL-Chat"
|
||||
|
||||
response, history = self.processing(prompt, img_data,settings, model_name,user_context=user_context)
|
||||
# jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
|
||||
|
||||
@ -153,4 +153,4 @@ class VLMConf():
|
||||
|
||||
@inject
|
||||
def __init__(self, config: Configuration) -> None:
|
||||
self.url = config.get("vlms.url")
|
||||
self.urls = config.get("vlms.urls")
|
||||
|
||||
Reference in New Issue
Block a user