mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-15 17:43:25 +00:00
new branch
This commit is contained in:
@ -19,40 +19,68 @@ class Fastchat(Blackbox):
|
||||
return isinstance(data, list)
|
||||
|
||||
# model_name有 Qwen1.5-14B-Chat , internlm2-chat-20b
|
||||
def processing(self, model_name, prompt, template, context: list) -> str:
|
||||
def processing(self, model_name, prompt, template, context: list, temperature, top_p, top_k, n, max_tokens) -> str:
|
||||
if context == None:
|
||||
context = []
|
||||
url = 'http://120.196.116.194:48892/v1/chat/completions'
|
||||
|
||||
# history可以为空列表,也可以是用户的对话历史
|
||||
# history = [
|
||||
# context可以为空列表,也可以是用户的对话历史
|
||||
# context = [
|
||||
# {
|
||||
# "role": "user",
|
||||
# "content": "你吃饭了吗"
|
||||
# "content": "智能体核心思想"
|
||||
# },
|
||||
# {
|
||||
# "role": "assistant",
|
||||
# "content": "作为一个AI模型,我没有吃饭的需要,因为我并不具备实体形态。我专注于提供信息和帮助回答你的问题。你有什么需要帮助的吗?"
|
||||
# "content": "智能体的核心思想是将人工智能应用于问题求解者角色,它通过算法模拟人类决策过程,通过感知环境、学习、规划和执行行动,以实现特定任务或目标。其目标是通过自我适应和优化,实现高效问题解决。"
|
||||
# },
|
||||
# ]
|
||||
|
||||
prompt_template = [
|
||||
{"role": "system", "content": template},
|
||||
]
|
||||
|
||||
fastchat_inputs={
|
||||
"model": model_name,
|
||||
"messages": context + [
|
||||
"messages": prompt_template + context + [
|
||||
{
|
||||
"role": "user",
|
||||
"content": template + prompt
|
||||
"content": prompt
|
||||
}
|
||||
]
|
||||
],
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"top_k": top_k,
|
||||
"n": n,
|
||||
"max_tokens": max_tokens,
|
||||
"stream": False,
|
||||
}
|
||||
|
||||
|
||||
# {
|
||||
# "model": "string",
|
||||
# "messages": "string",
|
||||
# "temperature": 0.7, # between 0 and 2. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic.
|
||||
# "top_p": 1, # 控制生成下一个单词的概率分布,即从所有可能的单词中,只选择概率最高的一部分作为候选单词
|
||||
# "top_k": -1, # top-k 参数设置为 3意味着选择前三个tokens。
|
||||
# "n": 1, # How many chat completion choices to generate for each input message.
|
||||
# "max_tokens": 1024, # The maximum number of tokens to generate in the chat completion.
|
||||
# "stop": [
|
||||
# "string"
|
||||
# ],
|
||||
# "stream": False,
|
||||
# "presence_penalty": 0, # Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.
|
||||
# "frequency_penalty": 0, # Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim.
|
||||
# "user": "string"
|
||||
# }
|
||||
|
||||
fastchat_response = requests.post(url, json=fastchat_inputs)
|
||||
|
||||
user_message = fastchat_inputs["messages"]
|
||||
context.append(user_message)
|
||||
# user_message = fastchat_inputs["messages"]
|
||||
# context.append(user_message)
|
||||
|
||||
assistant_message = fastchat_response.json()["choices"][0]["message"]
|
||||
context.append(assistant_message)
|
||||
# context.append(assistant_message)
|
||||
|
||||
fastchat_content = assistant_message["content"]
|
||||
|
||||
@ -68,17 +96,37 @@ class Fastchat(Blackbox):
|
||||
user_context = data.get("context")
|
||||
user_prompt = data.get("prompt")
|
||||
user_template = data.get("template")
|
||||
user_temperature = data.get("temperature")
|
||||
user_top_p = data.get("top_p")
|
||||
user_top_k = data.get("top_k")
|
||||
user_n = data.get("n")
|
||||
user_max_tokens = data.get("max_tokens")
|
||||
|
||||
if user_prompt is None:
|
||||
return JSONResponse(content={"error": "question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
|
||||
if user_model_name is None or user_model_name.isspace():
|
||||
if user_model_name is None or user_model_name.isspace() or user_model_name == "":
|
||||
user_model_name = "Qwen1.5-14B-Chat"
|
||||
|
||||
if user_template is None or user_template.isspace():
|
||||
# user_template 是定义LLM的语气,例如template = "使用小丑的语气说话。",user_template可以为空字串,或者是用户自定义的语气,或者是使用我们提供的语气
|
||||
# user_template 是定义LLM的语气,例如template = "使用小丑的语气说话。",user_template可以为空字串,或者是用户自定义的语气
|
||||
user_template = ""
|
||||
else:
|
||||
user_template = f"使用{user_template}的语气说话。"
|
||||
|
||||
if user_temperature is None or user_temperature == "":
|
||||
user_temperature = 0.7
|
||||
|
||||
return JSONResponse(content={"response": self.processing(user_model_name, user_prompt, user_template, user_context)}, status_code=status.HTTP_200_OK)
|
||||
if user_top_p is None or user_top_p == "":
|
||||
user_top_p = 1
|
||||
|
||||
if user_top_k is None or user_top_k == "":
|
||||
user_top_k = -1
|
||||
|
||||
if user_n is None or user_n == "":
|
||||
user_n = 3
|
||||
|
||||
if user_max_tokens is None or user_max_tokens == "":
|
||||
user_max_tokens = 1024
|
||||
|
||||
|
||||
return JSONResponse(content={"response": self.processing(user_model_name, user_prompt, user_template, user_context,
|
||||
user_temperature, user_top_p, user_top_k, user_n, user_max_tokens)}, status_code=status.HTTP_200_OK)
|
||||
Reference in New Issue
Block a user