Merge pull request #32 from BoardWare-Genius/ivan

fix: to support the vlm compatible with non streaming output
This commit is contained in:
IvanWu
2025-04-03 14:03:55 +08:00
committed by GitHub

View File

@ -58,7 +58,6 @@ class VLMS(Blackbox):
- skip_special_tokens (bool): Whether or not to remove special tokens
in the decoding. Default to be True."""
self.model_dict = vlm_config.urls
# self.model_url = None
self.available_models = {}
self.temperature: float = 0.7
self.top_p:float = 1
@ -87,7 +86,6 @@ class VLMS(Blackbox):
if response.status_code == 200:
self.available_models[model] = url
except Exception as e:
# print(e)
pass
def __call__(self, *args, **kwargs):
return self.processing(*args, **kwargs)
@ -96,7 +94,7 @@ class VLMS(Blackbox):
data = args[0]
return isinstance(data, list)
def processing(self, prompt:str | None, images:str | bytes | None, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
def processing(self, prompt:str | None, images:str | bytes | None, settings: dict, user_context: List[dict] = None) -> str:
"""
Args:
prompt: a string query to the model.
@ -130,8 +128,7 @@ class VLMS(Blackbox):
prompt = '你是一个辅助机器人请就此图做一个简短的概括性描述包括图中的主体物品及状态不超过50字。' if images else '你好'
# Transform the images into base64 format where openai url)
# print(self.config['vlm_model_name'])
# print(self.available_models)format need.
if images:
if is_base64(images): # image as base64 str
images_data = images
@ -144,38 +141,13 @@ class VLMS(Blackbox):
images_data = str(base64.b64encode(res.content),'utf-8')
else:
images_data = None
## AutoLoad Model
# url = 'http://10.6.80.87:8000/' + model_name + '/'
# data_input = {'model': model_name, 'prompt': prompt, 'img_data': images_data}
# data = requests.post(url, json=data_input)
# return data.text
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
## Lmdeploy
# if not user_context:
# user_context = []
## Predefine user_context only for testing
# user_context = [{'role':'user','content':'你好,我叫康康,你是谁?'}, {'role': 'assistant', 'content': '你好!很高兴为你提供帮助。'}]
# user_context = [{
# 'role': 'user',
# 'content': [{
# 'type': 'text',
# 'text': '图中有什么,请描述一下',
# }, {
# 'type': 'image_url',
# 'image_url': {
# 'url': 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
# },
# }]
# },{
# 'role': 'assistant',
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
# }
# ]
if not user_context and config['system_prompt']: user_context = [{'role':'system','content': config['system_prompt']}]
user_context = self.keep_last_k_images(user_context,k = 1)
# if self.model_url is None: self.model_url = self._get_model_url(model_name)
user_context = self.keep_last_k_images(user_context,k = 2)
# Reformat input into openai format to request.
if images_data:
@ -188,8 +160,6 @@ class VLMS(Blackbox):
'type': 'image_url',
'image_url': { # Image two
'url':
# 'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg'
# './val_data/image_5.jpg'
f"data:image/jpeg;base64,{images_data}",
},
# },{ # Image one
@ -213,9 +183,7 @@ class VLMS(Blackbox):
responses = ''
total_token_usage = 0 # which can be used to count the cost of a query
model_url = self._get_model_url(config['vlm_model_name'])
# print(model_url)
# print(self.config['vlm_model_name'])
# print(self.available_models)
if config['lmdeploy_infer']:
api_client = APIClient(model_url)
model_name = api_client.available_models[0]
@ -225,7 +193,6 @@ class VLMS(Blackbox):
# session_id=,
)):
# Stream output
# print(item["choices"][0]["delta"]['content'],end='\n')
yield item["choices"][0]["delta"]['content']
responses += item["choices"][0]["delta"]['content']
@ -234,7 +201,6 @@ class VLMS(Blackbox):
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
else:
api_key = "EMPTY_API_KEY"
# print(model_url+'/v1')
api_client = OpenAI(api_key=api_key, base_url=model_url+'/v1')
model_name = api_client.models.list().data[0].id
for item in api_client.chat.completions.create(
@ -256,7 +222,7 @@ class VLMS(Blackbox):
user_context = messages + [{'role': 'assistant', 'content': responses}]
self.custom_print(user_context)
# return responses, user_context
# return responses
def _get_model_url(self,model_name:str | None):
if not self.available_models: print("There are no available running models and please check your endpoint urls.")
@ -336,7 +302,6 @@ class VLMS(Blackbox):
result.append(item)
return result[::-1]
def custom_print(self, user_context: list):
result = []
for item in user_context:
@ -354,7 +319,6 @@ class VLMS(Blackbox):
json_request = True
try:
content_type = request.headers.get('content-type', '')
print(content_type)
if content_type == 'application/json':
data = await request.json()
elif 'multipart/form-data' in content_type:
@ -367,9 +331,10 @@ class VLMS(Blackbox):
except Exception as e:
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
model_name = data.get("model_name")
prompt = data.get("prompt")
settings: dict = data.get('settings')
context = data.get("context")
if not context:
user_context = []
@ -388,14 +353,12 @@ class VLMS(Blackbox):
if prompt is None:
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
# if model_name is None or model_name.isspace():
# model_name = "Qwen-VL-Chat"
# response,_ = self.processing(prompt, img_data,settings, model_name,user_context=user_context)
# return StreamingResponse(self.processing(prompt, img_data,settings, model_name,user_context=user_context), status_code=status.HTTP_200_OK)
return EventSourceResponse(self.processing(prompt, img_data,settings, model_name,user_context=user_context), status_code=status.HTTP_200_OK)
streaming_output = str(settings.get('stream',False)).strip().lower() == 'true' if settings else False
if streaming_output:
# return StreamingResponse(self.processing(prompt, img_data,settings, user_context=user_context), status_code=status.HTTP_200_OK)
return EventSourceResponse(self.processing(prompt, img_data,settings, user_context=user_context), status_code=status.HTTP_200_OK)
else:
# HTTP JsonResponse
response, history = self.processing(prompt, img_data,settings, model_name,user_context=user_context)
# return JSONResponse(content={"response": response}, status_code=status.HTTP_200_OK)
output = self.processing(prompt, img_data,settings, user_context=user_context)
response = ''.join([res for res in output])
return JSONResponse(content={"response": response}, status_code=status.HTTP_200_OK)