mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-13 16:53:24 +00:00
Merge branch 'main' into veraGDI
This commit is contained in:
@ -16,6 +16,7 @@ import re
|
||||
from injector import singleton,inject
|
||||
|
||||
from datetime import datetime
|
||||
from .websearch import WebSearch
|
||||
|
||||
# 定义保存文件的路径
|
||||
file_path = "chat_inputs_log.json"
|
||||
@ -23,8 +24,9 @@ file_path = "chat_inputs_log.json"
|
||||
class Chat(Blackbox):
|
||||
|
||||
@inject
|
||||
def __init__(self, chroma_query: ChromaQuery):
|
||||
def __init__(self, chroma_query: ChromaQuery, websearch: WebSearch):
|
||||
self.chroma_query = chroma_query
|
||||
self.websearch = websearch
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.processing(*args, **kwargs)
|
||||
@ -60,6 +62,7 @@ class Chat(Blackbox):
|
||||
system_prompt = settings.get('system_prompt')
|
||||
user_prompt_template = settings.get('user_prompt_template')
|
||||
user_stream = settings.get('stream')
|
||||
user_websearch = settings.get('websearch')
|
||||
|
||||
llm_model = "vllm"
|
||||
|
||||
@ -135,6 +138,8 @@ class Chat(Blackbox):
|
||||
if user_stream in [None, ""]:
|
||||
user_stream = False
|
||||
|
||||
if user_websearch in [None, ""]:
|
||||
user_websearch = False
|
||||
|
||||
# 文心格式和openai的不一样,需要单独处理
|
||||
if re.search(r"ernie", user_model_name):
|
||||
@ -201,6 +206,32 @@ class Chat(Blackbox):
|
||||
{"role": "system", "content": system_prompt}
|
||||
]
|
||||
|
||||
if user_websearch:
|
||||
search_answer_zh_template = \
|
||||
'''# 以下内容是基于用户发送的消息的搜索结果:
|
||||
{search_results}
|
||||
在我给你的搜索结果中,每个结果都是["title"]...["position": X]格式的,X代表每篇文章的数字索引。请在适当的情况下在句子末尾引用上下文。请按照引用编号[citation:X]的格式在答案中对应部分引用上下文。如果一句话源自多个上下文,请列出所有相关的引用编号,例如[citation:3][citation:5],切记不要将引用集中在最后返回引用编号,而是在答案对应部分列出。
|
||||
在回答时,请注意以下几点:
|
||||
- 今天是{cur_date}。
|
||||
- 并非搜索结果的所有内容都与用户的问题密切相关,你需要结合问题,对搜索结果进行甄别、筛选。
|
||||
- 对于列举类的问题(如列举所有航班信息),尽量将答案控制在10个要点以内,并告诉用户可以查看搜索来源、获得完整信息。优先提供信息完整、最相关的列举项;如非必要,不要主动告诉用户搜索结果未提供的内容。
|
||||
- 对于创作类的问题(如写论文),请务必在正文的段落中引用对应的参考编号,例如[citation:3][citation:5],不能只在文章末尾引用。你需要解读并概括用户的题目要求,选择合适的格式,充分利用搜索结果并抽取重要信息,生成符合用户要求、极具思想深度、富有创造力与专业性的答案。你的创作篇幅需要尽可能延长,对于每一个要点的论述要推测用户的意图,给出尽可能多角度的回答要点,且务必信息量大、论述详尽。
|
||||
- 如果回答很长,请尽量结构化、分段落总结。如果需要分点作答,尽量控制在5个点以内,并合并相关的内容。
|
||||
- 对于客观类的问答,如果问题的答案非常简短,可以适当补充一到两句相关信息,以丰富内容。
|
||||
- 你需要根据用户要求和回答内容选择合适、美观的回答格式,确保可读性强。
|
||||
- 你的回答应该综合多个相关网页来回答,不能重复引用一个网页。
|
||||
- 除非用户要求,否则你回答的语言需要和用户提问的语言保持一致。
|
||||
|
||||
# 用户消息为:
|
||||
{question}'''
|
||||
|
||||
websearch_response = self.websearch(prompt, settings)
|
||||
print("2.Websearch_response: \n", websearch_response)
|
||||
|
||||
today = datetime.today().strftime("%Y-%m-%d")
|
||||
|
||||
user_question = search_answer_zh_template.format(question=user_question, cur_date=today, search_results=websearch_response["organic"])
|
||||
|
||||
if llm_model != "vllm":
|
||||
chat_inputs={
|
||||
"model": user_model_name,
|
||||
@ -222,7 +253,12 @@ class Chat(Blackbox):
|
||||
else:
|
||||
chat_inputs={
|
||||
"model": user_model_name,
|
||||
"prompt": user_question,
|
||||
"messages": prompt_template + user_context + [
|
||||
{
|
||||
"role": "user",
|
||||
"content": user_question
|
||||
}
|
||||
],
|
||||
"temperature": float(user_temperature),
|
||||
"top_p": float(user_top_p),
|
||||
"n": float(user_n),
|
||||
|
||||
93
src/blackbox/cosyvoicetts.py
Normal file
93
src/blackbox/cosyvoicetts.py
Normal file
@ -0,0 +1,93 @@
|
||||
import io
|
||||
import time
|
||||
|
||||
import requests
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
from injector import inject
|
||||
from injector import singleton
|
||||
|
||||
from ..log.logging_time import logging_time
|
||||
|
||||
from ..configuration import CosyVoiceConf
|
||||
from .blackbox import Blackbox
|
||||
|
||||
import soundfile
|
||||
import pyloudnorm as pyln
|
||||
import sys
|
||||
sys.path.append('/home/gpu/Workspace/CosyVoice')
|
||||
from cosyvoice.cli.cosyvoice import CosyVoice
|
||||
from cosyvoice.utils.file_utils import load_wav
|
||||
import torchaudio
|
||||
|
||||
import os
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@singleton
|
||||
class CosyVoiceTTS(Blackbox):
|
||||
mode: str
|
||||
url: str
|
||||
speed: int
|
||||
device: str
|
||||
language: str
|
||||
speaker: str
|
||||
|
||||
@logging_time(logger=logger)
|
||||
def model_init(self, cosyvoice_config: CosyVoiceConf) -> None:
|
||||
self.speed = cosyvoice_config.speed
|
||||
self.device = cosyvoice_config.device
|
||||
self.language = cosyvoice_config.language
|
||||
self.speaker = cosyvoice_config.speaker
|
||||
self.device = cosyvoice_config.device
|
||||
self.url = ''
|
||||
self.mode = cosyvoice_config.mode
|
||||
self.cosyvoicetts = None
|
||||
self.speaker_ids = None
|
||||
os.environ['CUDA_VISIBLE_DEVICES'] = str(cosyvoice_config.device)
|
||||
if self.mode == 'local':
|
||||
self.cosyvoicetts = CosyVoice('/home/gpu/Workspace/Models/CosyVoice/pretrained_models/CosyVoice-300M')
|
||||
|
||||
else:
|
||||
self.url = cosyvoice_config.url
|
||||
logging.info('#### Initializing CosyVoiceTTS Service in cuda:' + str(cosyvoice_config.device) + ' mode...')
|
||||
|
||||
@inject
|
||||
def __init__(self, cosyvoice_config: CosyVoiceConf) -> None:
|
||||
self.model_init(cosyvoice_config)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.processing(*args, **kwargs)
|
||||
|
||||
def valid(self, *args, **kwargs) -> bool:
|
||||
text = args[0]
|
||||
return isinstance(text, str)
|
||||
|
||||
@logging_time(logger=logger)
|
||||
def processing(self, *args, **kwargs) -> io.BytesIO | bytes:
|
||||
text = args[0]
|
||||
current_time = time.time()
|
||||
if self.mode == 'local':
|
||||
audio = self.cosyvoicetts.inference_sft(text, self.language)
|
||||
f = io.BytesIO()
|
||||
soundfile.write(f, audio['tts_speech'].cpu().numpy().squeeze(0), 22050, format='wav')
|
||||
f.seek(0)
|
||||
print("#### CosyVoiceTTS Service consume - local : ", (time.time() - current_time))
|
||||
return f.read()
|
||||
else:
|
||||
message = {
|
||||
"text": text
|
||||
}
|
||||
response = requests.post(self.url, json=message)
|
||||
print("#### CosyVoiceTTS Service consume - docker : ", (time.time()-current_time))
|
||||
return response.content
|
||||
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
try:
|
||||
data = await request.json()
|
||||
except:
|
||||
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
text = data.get("text")
|
||||
if text is None:
|
||||
return JSONResponse(content={"error": "text is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
return Response(content=self.processing(text), media_type="audio/wav", headers={"Content-Disposition": "attachment; filename=audio.wav"})
|
||||
108
src/blackbox/melotts.py
Normal file
108
src/blackbox/melotts.py
Normal file
@ -0,0 +1,108 @@
|
||||
import io
|
||||
import time
|
||||
|
||||
import requests
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
from injector import inject
|
||||
from injector import singleton
|
||||
|
||||
from ..log.logging_time import logging_time
|
||||
|
||||
from ..configuration import MeloConf
|
||||
from .blackbox import Blackbox
|
||||
|
||||
import soundfile
|
||||
import pyloudnorm as pyln
|
||||
from melo.api import TTS
|
||||
|
||||
import logging
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@singleton
|
||||
class MeloTTS(Blackbox):
|
||||
mode: str
|
||||
url: str
|
||||
speed: int
|
||||
device: str
|
||||
language: str
|
||||
speaker: str
|
||||
|
||||
@logging_time(logger=logger)
|
||||
def model_init(self, melo_config: MeloConf) -> None:
|
||||
self.speed = melo_config.speed
|
||||
self.device = melo_config.device
|
||||
self.language = melo_config.language
|
||||
self.speaker = melo_config.speaker
|
||||
self.device = melo_config.device
|
||||
self.url = ''
|
||||
self.mode = melo_config.mode
|
||||
self.melotts = None
|
||||
self.speaker_ids = None
|
||||
if self.mode == 'local':
|
||||
self.melotts = TTS(language=self.language, device=self.device)
|
||||
self.speaker_ids = self.melotts.hps.data.spk2id
|
||||
else:
|
||||
self.url = melo_config.url
|
||||
logging.info('#### Initializing MeloTTS Service in ' + self.device + ' mode...')
|
||||
|
||||
@inject
|
||||
def __init__(self, melo_config: MeloConf) -> None:
|
||||
self.model_init(melo_config)
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.processing(*args, **kwargs)
|
||||
|
||||
def valid(self, *args, **kwargs) -> bool:
|
||||
text = args[0]
|
||||
return isinstance(text, str)
|
||||
|
||||
@logging_time(logger=logger)
|
||||
def processing(self, *args, **kwargs) -> io.BytesIO | bytes:
|
||||
text = args[0]
|
||||
current_time = time.time()
|
||||
if self.mode == 'local':
|
||||
audio = self.melotts.tts_to_file(text, self.speaker_ids[self.speaker], speed=self.speed)
|
||||
f = io.BytesIO()
|
||||
soundfile.write(f, audio, 44100, format='wav')
|
||||
f.seek(0)
|
||||
# print("#### MeloTTS Service consume - local : ", (time.time() - current_time))
|
||||
# return f.read()
|
||||
|
||||
|
||||
# Read the audio data from the buffer
|
||||
data, rate = soundfile.read(f, dtype='float32')
|
||||
|
||||
# Peak normalization
|
||||
peak_normalized_audio = pyln.normalize.peak(data, -1.0)
|
||||
|
||||
# Integrated loudness normalization
|
||||
meter = pyln.Meter(rate)
|
||||
loudness = meter.integrated_loudness(peak_normalized_audio)
|
||||
loudness_normalized_audio = pyln.normalize.loudness(peak_normalized_audio, loudness, -12.0)
|
||||
|
||||
# Write the loudness normalized audio to an in-memory buffer
|
||||
normalized_audio_buffer = io.BytesIO()
|
||||
soundfile.write(normalized_audio_buffer, loudness_normalized_audio, rate, format='wav')
|
||||
normalized_audio_buffer.seek(0)
|
||||
|
||||
print("#### MeloTTS Service consume - local : ", (time.time() - current_time))
|
||||
return normalized_audio_buffer.read()
|
||||
|
||||
else:
|
||||
message = {
|
||||
"text": text
|
||||
}
|
||||
response = requests.post(self.url, json=message)
|
||||
print("#### MeloTTS Service consume - docker : ", (time.time()-current_time))
|
||||
return response.content
|
||||
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
try:
|
||||
data = await request.json()
|
||||
except:
|
||||
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
text = data.get("text")
|
||||
if text is None:
|
||||
return JSONResponse(content={"error": "text is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
return Response(content=self.processing(text), media_type="audio/wav", headers={"Content-Disposition": "attachment; filename=audio.wav"})
|
||||
@ -1,5 +1,6 @@
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.responses import JSONResponse, StreamingResponse
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
from injector import singleton,inject
|
||||
from typing import Optional, List
|
||||
|
||||
@ -12,14 +13,17 @@ import requests
|
||||
import base64
|
||||
import copy
|
||||
import ast
|
||||
|
||||
import json
|
||||
|
||||
import random
|
||||
from time import time
|
||||
|
||||
|
||||
import io
|
||||
from PIL import Image
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
import io
|
||||
from PIL import Image
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
|
||||
def is_base64(value) -> bool:
|
||||
try:
|
||||
@ -51,8 +55,8 @@ class VLMS(Blackbox):
|
||||
- ignore_eos (bool): indicator for ignoring eos
|
||||
- skip_special_tokens (bool): Whether or not to remove special tokens
|
||||
in the decoding. Default to be True."""
|
||||
self.url = vlm_config.url
|
||||
|
||||
self.model_dict = vlm_config.urls
|
||||
self.model_url = None
|
||||
self.temperature: float = 0.7
|
||||
self.top_p:float = 1
|
||||
self.max_tokens: (int |None) = 512
|
||||
@ -82,7 +86,7 @@ class VLMS(Blackbox):
|
||||
data = args[0]
|
||||
return isinstance(data, list)
|
||||
|
||||
def processing(self, prompt:str, images:str | bytes, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
|
||||
def processing(self, prompt:str | None, images:str | bytes | None, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
|
||||
"""
|
||||
Args:
|
||||
prompt: a string query to the model.
|
||||
@ -105,6 +109,9 @@ class VLMS(Blackbox):
|
||||
else:
|
||||
settings = {}
|
||||
|
||||
if not prompt:
|
||||
prompt = '你是一个辅助机器人,请就此图做一个简短的概括性描述,包括图中的主体物品及状态,不超过50字。' if images else '你好'
|
||||
|
||||
# Transform the images into base64 format where openai format need.
|
||||
if images:
|
||||
if is_base64(images): # image as base64 str
|
||||
@ -148,7 +155,11 @@ class VLMS(Blackbox):
|
||||
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
|
||||
# }
|
||||
# ]
|
||||
api_client = APIClient(self.url)
|
||||
|
||||
user_context = self.keep_last_k_images(user_context,k = 1)
|
||||
if self.model_url is None: self.model_url = self._get_model_url(model_name)
|
||||
|
||||
api_client = APIClient(self.model_url)
|
||||
# api_client = APIClient("http://10.6.80.91:23333")
|
||||
model_name = api_client.available_models[0]
|
||||
# Reformat input into openai format to request.
|
||||
@ -187,20 +198,39 @@ class VLMS(Blackbox):
|
||||
responses = ''
|
||||
total_token_usage = 0 # which can be used to count the cost of a query
|
||||
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
|
||||
messages=messages,#stream = True,
|
||||
messages=messages,stream = True,
|
||||
**settings,
|
||||
# session_id=,
|
||||
)):
|
||||
# Stream output
|
||||
# print(item["choices"][0]["delta"]['content'],end='')
|
||||
# responses += item["choices"][0]["delta"]['content']
|
||||
print(item["choices"][0]["delta"]['content'],end='\n')
|
||||
yield item["choices"][0]["delta"]['content']
|
||||
responses += item["choices"][0]["delta"]['content']
|
||||
|
||||
print(item["choices"][0]["message"]['content'])
|
||||
responses += item["choices"][0]["message"]['content']
|
||||
# print(item["choices"][0]["message"]['content'])
|
||||
# responses += item["choices"][0]["message"]['content']
|
||||
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
|
||||
|
||||
user_context = messages + [{'role': 'assistant', 'content': responses}]
|
||||
return responses, user_context
|
||||
self.custom_print(user_context)
|
||||
# return responses, user_context
|
||||
|
||||
def _get_model_url(self,model_name:str | None):
|
||||
available_models = {}
|
||||
for model, url in self.model_dict.items():
|
||||
try:
|
||||
response = requests.get(url,timeout=3)
|
||||
if response.status_code == 200:
|
||||
available_models[model] = url
|
||||
except Exception as e:
|
||||
# print(e)
|
||||
pass
|
||||
if not available_models: print("There are no available running models and please check your endpoint urls.")
|
||||
if model_name and model_name in available_models:
|
||||
return available_models[model_name]
|
||||
else:
|
||||
model = random.choice(list(available_models.keys()))
|
||||
print(f"No such model {model_name}, using {model} instead.") if model_name else print(f"Using random model {model}.")
|
||||
return available_models[model]
|
||||
|
||||
def _into_openai_format(self, context:List[list]) -> List[dict]:
|
||||
"""
|
||||
@ -255,7 +285,35 @@ class VLMS(Blackbox):
|
||||
|
||||
return user_context
|
||||
|
||||
def keep_last_k_images(self, user_context: list, k:int=2):
|
||||
count = 0
|
||||
result =[]
|
||||
for item in user_context[::-1]:
|
||||
if item['role'] == 'user' and len(item['content']) > 1:
|
||||
for idx, info in enumerate(item['content']):
|
||||
if info['type'] in ('image_url','image') and count >= k:
|
||||
item['content'].pop(idx)
|
||||
# item['content'].insert(idx, {'type': 'text', 'text': '<IMAGE>'})
|
||||
elif info['type'] in ('image_url','image') and count < k:
|
||||
count += 1
|
||||
else:
|
||||
continue
|
||||
result.append(item)
|
||||
return result[::-1]
|
||||
|
||||
|
||||
def custom_print(self, user_context: list):
|
||||
result = []
|
||||
for item in user_context:
|
||||
if item['role'] == 'user':
|
||||
for idx, info in enumerate(item['content']):
|
||||
if info['type'] in ('image_url','image'):
|
||||
item['content'].pop(idx)
|
||||
item['content'].insert(idx, {'type': 'image', 'image': '##<IMAGE>##'})
|
||||
else:
|
||||
continue
|
||||
result.append(item)
|
||||
print(result)
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
## TODO: add support for multiple images and support image in form-data format
|
||||
json_request = True
|
||||
@ -278,7 +336,6 @@ class VLMS(Blackbox):
|
||||
prompt = data.get("prompt")
|
||||
settings: dict = data.get('settings')
|
||||
context = data.get("context")
|
||||
|
||||
if not context:
|
||||
user_context = []
|
||||
elif isinstance(context[0], list):
|
||||
@ -297,10 +354,13 @@ class VLMS(Blackbox):
|
||||
if prompt is None:
|
||||
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
|
||||
if model_name is None or model_name.isspace():
|
||||
model_name = "Qwen-VL-Chat"
|
||||
# if model_name is None or model_name.isspace():
|
||||
# model_name = "Qwen-VL-Chat"
|
||||
# response,_ = self.processing(prompt, img_data,settings, model_name,user_context=user_context)
|
||||
|
||||
# return StreamingResponse(self.processing(prompt, img_data,settings, model_name,user_context=user_context), status_code=status.HTTP_200_OK)
|
||||
return EventSourceResponse(self.processing(prompt, img_data,settings, model_name,user_context=user_context), status_code=status.HTTP_200_OK)
|
||||
|
||||
# HTTP JsonResponse
|
||||
response, history = self.processing(prompt, img_data,settings, model_name,user_context=user_context)
|
||||
# jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
|
||||
|
||||
return JSONResponse(content={"response": response}, status_code=status.HTTP_200_OK)
|
||||
# return JSONResponse(content={"response": response}, status_code=status.HTTP_200_OK)
|
||||
73
src/blackbox/websearch.py
Normal file
73
src/blackbox/websearch.py
Normal file
@ -0,0 +1,73 @@
|
||||
import datetime
|
||||
from typing import Any, Coroutine
|
||||
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
from openai import OpenAI
|
||||
from .blackbox import Blackbox
|
||||
|
||||
import logging
|
||||
from ..log.logging_time import logging_time
|
||||
import requests
|
||||
import json
|
||||
|
||||
logger = logging.getLogger
|
||||
DEFAULT_COLLECTION_ID = "123"
|
||||
|
||||
from injector import singleton
|
||||
@singleton
|
||||
class WebSearch(Blackbox):
|
||||
|
||||
def __call__(self, *args, **kwargs):
|
||||
return self.processing(*args, **kwargs)
|
||||
|
||||
def valid(self, *args, **kwargs) -> bool:
|
||||
data = args[0]
|
||||
return isinstance(data, list)
|
||||
|
||||
# @logging_time(logger=logger)
|
||||
def processing(self, question: str, settings: dict) -> str:
|
||||
|
||||
if settings is None:
|
||||
settings = {}
|
||||
|
||||
# from googlesearch import search
|
||||
|
||||
# question = "要搜索的关键词"
|
||||
# for url in search(question, num_results=10):
|
||||
# print(url)
|
||||
|
||||
url = "https://google.serper.dev/search"
|
||||
|
||||
payload = json.dumps({
|
||||
"q": question,
|
||||
"location": "China", # 限制所在位置为中国
|
||||
"gl": "cn", # 限制国家为中国
|
||||
"hl": "zh-cn", # 限制搜索结果为中文
|
||||
"tbs": "qdr:y" # 限制搜索结果为一年内的
|
||||
})
|
||||
|
||||
headers = {
|
||||
'X-API-KEY': '00c0f5144e44721bd0cfed219e2b3256bb3dd5fc',
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
|
||||
response = requests.request("POST", url, headers=headers, data=payload)
|
||||
|
||||
print("web search results:", response.json())
|
||||
|
||||
return response.json()
|
||||
|
||||
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
try:
|
||||
data = await request.json()
|
||||
except:
|
||||
return JSONResponse(content={"error": "json parse error"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
|
||||
user_question = data.get("question")
|
||||
setting = data.get("settings")
|
||||
|
||||
return JSONResponse(
|
||||
content={"response": self.processing(user_question, setting)},
|
||||
status_code=status.HTTP_200_OK)
|
||||
@ -179,4 +179,4 @@ class VLMConf():
|
||||
|
||||
@inject
|
||||
def __init__(self, config: Configuration) -> None:
|
||||
self.url = config.get("vlms.url")
|
||||
self.urls = config.get("vlms.urls")
|
||||
|
||||
Reference in New Issue
Block a user