mirror of
https://github.com/BoardWare-Genius/jarvis-models.git
synced 2025-12-14 00:53:25 +00:00
Merge branch 'main' into veraGDI
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
from fastapi import Request, Response, status
|
||||
from fastapi.responses import JSONResponse
|
||||
from fastapi.responses import JSONResponse, StreamingResponse
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
from injector import singleton,inject
|
||||
from typing import Optional, List
|
||||
|
||||
@ -12,14 +13,17 @@ import requests
|
||||
import base64
|
||||
import copy
|
||||
import ast
|
||||
|
||||
import json
|
||||
|
||||
import random
|
||||
from time import time
|
||||
|
||||
|
||||
import io
|
||||
from PIL import Image
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
import io
|
||||
from PIL import Image
|
||||
from lmdeploy.serve.openai.api_client import APIClient
|
||||
|
||||
|
||||
def is_base64(value) -> bool:
|
||||
try:
|
||||
@ -51,8 +55,8 @@ class VLMS(Blackbox):
|
||||
- ignore_eos (bool): indicator for ignoring eos
|
||||
- skip_special_tokens (bool): Whether or not to remove special tokens
|
||||
in the decoding. Default to be True."""
|
||||
self.url = vlm_config.url
|
||||
|
||||
self.model_dict = vlm_config.urls
|
||||
self.model_url = None
|
||||
self.temperature: float = 0.7
|
||||
self.top_p:float = 1
|
||||
self.max_tokens: (int |None) = 512
|
||||
@ -82,7 +86,7 @@ class VLMS(Blackbox):
|
||||
data = args[0]
|
||||
return isinstance(data, list)
|
||||
|
||||
def processing(self, prompt:str, images:str | bytes, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
|
||||
def processing(self, prompt:str | None, images:str | bytes | None, settings: dict, model_name: Optional[str] = None, user_context: List[dict] = None) -> str:
|
||||
"""
|
||||
Args:
|
||||
prompt: a string query to the model.
|
||||
@ -105,6 +109,9 @@ class VLMS(Blackbox):
|
||||
else:
|
||||
settings = {}
|
||||
|
||||
if not prompt:
|
||||
prompt = '你是一个辅助机器人,请就此图做一个简短的概括性描述,包括图中的主体物品及状态,不超过50字。' if images else '你好'
|
||||
|
||||
# Transform the images into base64 format where openai format need.
|
||||
if images:
|
||||
if is_base64(images): # image as base64 str
|
||||
@ -148,7 +155,11 @@ class VLMS(Blackbox):
|
||||
# 'content': '图片中主要展示了一只老虎,它正在绿色的草地上休息。草地上有很多可以让人坐下的地方,而且看起来相当茂盛。背景比较模糊,可能是因为老虎的影响,让整个图片的其他部分都变得不太清晰了。'
|
||||
# }
|
||||
# ]
|
||||
api_client = APIClient(self.url)
|
||||
|
||||
user_context = self.keep_last_k_images(user_context,k = 1)
|
||||
if self.model_url is None: self.model_url = self._get_model_url(model_name)
|
||||
|
||||
api_client = APIClient(self.model_url)
|
||||
# api_client = APIClient("http://10.6.80.91:23333")
|
||||
model_name = api_client.available_models[0]
|
||||
# Reformat input into openai format to request.
|
||||
@ -187,21 +198,40 @@ class VLMS(Blackbox):
|
||||
responses = ''
|
||||
total_token_usage = 0 # which can be used to count the cost of a query
|
||||
for i,item in enumerate(api_client.chat_completions_v1(model=model_name,
|
||||
messages=messages,#stream = True,
|
||||
messages=messages,stream = True,
|
||||
**settings,
|
||||
# session_id=,
|
||||
)):
|
||||
# Stream output
|
||||
# print(item["choices"][0]["delta"]['content'],end='')
|
||||
# responses += item["choices"][0]["delta"]['content']
|
||||
print(item["choices"][0]["delta"]['content'],end='\n')
|
||||
yield item["choices"][0]["delta"]['content']
|
||||
responses += item["choices"][0]["delta"]['content']
|
||||
|
||||
print(item["choices"][0]["message"]['content'])
|
||||
responses += item["choices"][0]["message"]['content']
|
||||
# print(item["choices"][0]["message"]['content'])
|
||||
# responses += item["choices"][0]["message"]['content']
|
||||
# total_token_usage += item['usage']['total_tokens'] # 'usage': {'prompt_tokens': *, 'total_tokens': *, 'completion_tokens': *}
|
||||
|
||||
user_context = messages + [{'role': 'assistant', 'content': responses}]
|
||||
return responses, user_context
|
||||
self.custom_print(user_context)
|
||||
# return responses, user_context
|
||||
|
||||
def _get_model_url(self,model_name:str | None):
|
||||
available_models = {}
|
||||
for model, url in self.model_dict.items():
|
||||
try:
|
||||
response = requests.get(url,timeout=3)
|
||||
if response.status_code == 200:
|
||||
available_models[model] = url
|
||||
except Exception as e:
|
||||
# print(e)
|
||||
pass
|
||||
if not available_models: print("There are no available running models and please check your endpoint urls.")
|
||||
if model_name and model_name in available_models:
|
||||
return available_models[model_name]
|
||||
else:
|
||||
model = random.choice(list(available_models.keys()))
|
||||
print(f"No such model {model_name}, using {model} instead.") if model_name else print(f"Using random model {model}.")
|
||||
return available_models[model]
|
||||
|
||||
def _into_openai_format(self, context:List[list]) -> List[dict]:
|
||||
"""
|
||||
Convert the data into openai format.
|
||||
@ -255,7 +285,35 @@ class VLMS(Blackbox):
|
||||
|
||||
return user_context
|
||||
|
||||
def keep_last_k_images(self, user_context: list, k:int=2):
|
||||
count = 0
|
||||
result =[]
|
||||
for item in user_context[::-1]:
|
||||
if item['role'] == 'user' and len(item['content']) > 1:
|
||||
for idx, info in enumerate(item['content']):
|
||||
if info['type'] in ('image_url','image') and count >= k:
|
||||
item['content'].pop(idx)
|
||||
# item['content'].insert(idx, {'type': 'text', 'text': '<IMAGE>'})
|
||||
elif info['type'] in ('image_url','image') and count < k:
|
||||
count += 1
|
||||
else:
|
||||
continue
|
||||
result.append(item)
|
||||
return result[::-1]
|
||||
|
||||
|
||||
def custom_print(self, user_context: list):
|
||||
result = []
|
||||
for item in user_context:
|
||||
if item['role'] == 'user':
|
||||
for idx, info in enumerate(item['content']):
|
||||
if info['type'] in ('image_url','image'):
|
||||
item['content'].pop(idx)
|
||||
item['content'].insert(idx, {'type': 'image', 'image': '##<IMAGE>##'})
|
||||
else:
|
||||
continue
|
||||
result.append(item)
|
||||
print(result)
|
||||
async def fast_api_handler(self, request: Request) -> Response:
|
||||
## TODO: add support for multiple images and support image in form-data format
|
||||
json_request = True
|
||||
@ -278,7 +336,6 @@ class VLMS(Blackbox):
|
||||
prompt = data.get("prompt")
|
||||
settings: dict = data.get('settings')
|
||||
context = data.get("context")
|
||||
|
||||
if not context:
|
||||
user_context = []
|
||||
elif isinstance(context[0], list):
|
||||
@ -297,10 +354,13 @@ class VLMS(Blackbox):
|
||||
if prompt is None:
|
||||
return JSONResponse(content={'error': "Question is required"}, status_code=status.HTTP_400_BAD_REQUEST)
|
||||
|
||||
if model_name is None or model_name.isspace():
|
||||
model_name = "Qwen-VL-Chat"
|
||||
# if model_name is None or model_name.isspace():
|
||||
# model_name = "Qwen-VL-Chat"
|
||||
# response,_ = self.processing(prompt, img_data,settings, model_name,user_context=user_context)
|
||||
|
||||
# return StreamingResponse(self.processing(prompt, img_data,settings, model_name,user_context=user_context), status_code=status.HTTP_200_OK)
|
||||
return EventSourceResponse(self.processing(prompt, img_data,settings, model_name,user_context=user_context), status_code=status.HTTP_200_OK)
|
||||
|
||||
# HTTP JsonResponse
|
||||
response, history = self.processing(prompt, img_data,settings, model_name,user_context=user_context)
|
||||
# jsonresp = str(JSONResponse(content={"response": self.processing(prompt, img_data, model_name)}).body, "utf-8")
|
||||
|
||||
return JSONResponse(content={"response": response}, status_code=status.HTTP_200_OK)
|
||||
# return JSONResponse(content={"response": response}, status_code=status.HTTP_200_OK)
|
||||
Reference in New Issue
Block a user